Biochem Biophys Res Commun
September 2024
The R-type voltage-gated calcium channel Ca2.3 is predominantly located in the presynapse and is implicated in distinct types of epileptic seizures. It has consequently emerged as a molecular target in seizure treatment.
View Article and Find Full Text PDFThe voltage-gated calcium channel Ca1.2 is essential for cardiac and vessel smooth muscle contractility and brain function. Accumulating evidence demonstrates that malfunctions of Ca1.
View Article and Find Full Text PDFHigh-voltage-activated R-type Ca2.3 channel plays pivotal roles in many physiological activities and is implicated in epilepsy, convulsions, and other neurodevelopmental impairments. Here, we determine the high-resolution cryo-electron microscopy (cryo-EM) structure of human Ca2.
View Article and Find Full Text PDFSodium-proton exchanger 3 (NHE3/SLC9A3) located in the apical membrane of renal and gastrointestinal epithelia mediates salt and fluid absorption and regulates pH homeostasis. As an auxiliary regulatory factor of NHE proteins, calcineurin B homologous protein 1 (CHP1) facilitates NHE3 maturation, plasmalemmal expression, and pH sensitivity. Dysfunctions of NHE3 are associated with renal and digestive system disorders.
View Article and Find Full Text PDFVoltage-gated sodium (Na) channels play fundamental roles in initiating and propagating action potentials. Na1.3 is involved in numerous physiological processes including neuronal development, hormone secretion and pain perception.
View Article and Find Full Text PDFGlycosylphosphatidylinositol (GPI) molecules are complex glycophospholipids and serve as membrane anchors for tethering many proteins to the cell surface. Attaching GPI to the protein in the endoplasmic reticulum (ER) is catalyzed by the transmembrane GPI transamidase (GPIT) complex, which is essential for maturation of the GPI-anchored proteins. The GPIT complex is known to be composed of five subunits: PIGK, PIGU, PIGT, PIGS and GPAA1.
View Article and Find Full Text PDFN-type voltage-gated calcium (Ca) channels mediate Ca influx at presynaptic terminals in response to action potentials and play vital roles in synaptogenesis, release of neurotransmitters, and nociceptive transmission. Here, we elucidate a cryo-electron microscopy (cryo-EM) structure of the human Ca2.2 complex in apo, ziconotide-bound, and two Ca2.
View Article and Find Full Text PDFGlutamate-gated kainate receptors are ubiquitous in the central nervous system of vertebrates, mediate synaptic transmission at the postsynapse and modulate transmitter release at the presynapse. In the brain, the trafficking, gating kinetics and pharmacology of kainate receptors are tightly regulated by neuropilin and tolloid-like (NETO) proteins. Here we report cryo-electron microscopy structures of homotetrameric GluK2 in complex with NETO2 at inhibited and desensitized states, illustrating variable stoichiometry of GluK2-NETO2 complexes, with one or two NETO2 subunits associating with GluK2.
View Article and Find Full Text PDFCell surface trafficking of many G protein-coupled receptors is tightly regulated. Among them, the mandatory heterodimer GABA receptor for the main inhibitory neurotransmitter, γ-aminobutyric acid (GABA), is a model. In mammals, its cell surface trafficking is highly controlled by an endoplasmic reticulum retention signal in the C-terminal intracellular region of the GB1 subunit that is masked through a coiled-coil interaction with the GB2 subunit.
View Article and Find Full Text PDFMultiple subtypes of dopamine receptors within the GPCR superfamily regulate neurological processes through various downstream signaling pathways. A crucial question about the dopamine receptor family is what structural features determine the subtype-selectivity of potential drugs. Here, we report the 3.
View Article and Find Full Text PDFThe evolutionarily conserved YidC/Oxa1/Alb3 family of proteins represents a unique membrane protein family that facilitates the insertion, folding, and assembly of a cohort of α-helical membrane proteins in all kingdoms of life, yet its underlying mechanisms remain elusive. We report the crystal structures of the full-length Thermotoga maritima YidC (TmYidC) and the TmYidC periplasmic domain (TmPD) at a resolution of 3.8 and 2.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2014
Various strains of bacteria are able to produce a unique class of functional amyloids termed curli, which are critical for biofilm formation, host cell adhesion, and colonization of inert surfaces. Curli are secreted via the type VIII bacterial secretion system, and they share biochemical and structural characteristics with amyloid fibers that have been implicated in deleterious disease in humans. Here, we report the crystal structure of Escherichia coli CsgG, which is an essential lipoprotein component of the type VIII secretion system and which forms a secretion channel in the bacterial outer membrane for transporting curli subunits.
View Article and Find Full Text PDFOne of the fundamental properties of biological membranes is the asymmetric distribution of membrane lipids. In Gram-negative bacteria, the outer leaflet of the outer membrane is composed predominantly of lipopolysaccharides (LPS). The export of LPS requires seven essential lipopolysaccharide transport (Lpt) proteins to move LPS from the inner membrane, through the periplasm to the surface.
View Article and Find Full Text PDFMembrane-integrated type II phosphatidic acid phosphatases (PAP2s) are important for numerous bacterial to human biological processes, including glucose transport, lipid metabolism, and signaling. Escherichia coli phosphatidylglycerol-phosphate phosphatase B (ecPgpB) catalyzes removing the terminal phosphate group from a lipid carrier, undecaprenyl pyrophosphate, and is essential for transport of many hydrophilic small molecules across the membrane. We determined the crystal structure of ecPgpB at a resolution of 3.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2013
The major facilitator superfamily (MFS) is the largest family of secondary active transporters and is present in all life kingdoms. Detailed structural basis of the substrate transport and energy-coupling mechanisms of these proteins remain to be elucidated. YajR is a putative proton-driven MFS transporter found in many Gram-negative bacteria.
View Article and Find Full Text PDF