Nuclear receptor subfamily 4 group A member 3 (NR4A3) is a member of the orphan nuclear receptor superfamily, and exhibits transcription factor activity by binding to sequence-specific DNA. Considering that the specific mechanism by which NR4A3 regulates gene transcription in HCC (hepatocellular carcinoma) has not yet been elucidated, our study aimed to explore the transcriptional role of NR4A3 in regulating the target gene CDKN2AIP (CDKN2A interacting protein), which will suppress the development of HCC. Our data show that NR4A3 is downregulated in human HCC tissues, and that low expression of NR4A3 is correlated with poor prognosis, indicating that NR4A3 could act as a tumor suppressor gene in HCC.
View Article and Find Full Text PDFPurpose: Terminal nucleotidyltransferase 5A (TENT5A), recently predicted as a non-canonical poly(A) polymerase, is critically involved in several human disorders including retinitis pigmentosa, cancer and obesity. However, the exact biological role of TENT5A in hepatocellular carcinoma (HCC) has not been elucidated.
Methods: The transcription level of TENT5A and clinical correlation were analyzed using the LIRI-JP cohort, the TCGA-LIHC cohort, and clinical tissue samples of HCC patients in our laboratory.
Syntaxin-6 (STX6), a protein of the syntaxin family, is located in the trans-Golgi network and is involved in a variety of intracellular membrane transport events. STX6 is overexpressed in different human malignant tumors. However, little is known about its exact function and molecular mechanism in hepatocellular carcinoma (HCC).
View Article and Find Full Text PDFBackground: Colon cancer is the second leading cancer worldwide. Recurrent disease and chemotherapeutic drug resistance are very common in the advanced stage of colon cancer. ATP-citrate lyase (ACLY), the first-step rate-controlling enzyme in lipid synthesis, is elevated in colon cancer.
View Article and Find Full Text PDFAlthough identified as a growth factor, the mechanism by which hepatoma-derived growth factor (HDGF) promotes cancer development remains unclear. We found that nuclear but not cytoplasmic HDGF is closely associated with prognosis of hepatocellular carcinoma (HCC). RNA-sequencing analysis further demonstrated that the nuclear role of HDGF involved regulation of transcription of lipid metabolism genes.
View Article and Find Full Text PDFDysregulation of lipid metabolism is common in cancer cells, but the underlying mechanisms are poorly understood. Sterol regulatory element-binding proteins (SREBPs) stimulate lipid biosynthesis through transcriptional activation of lipogenic enzymes. However, SREBPs' roles and potential interacting partners in cancer cells are not fully defined.
View Article and Find Full Text PDF