Publications by authors named "Xuejia Hu"

Intracellular cargo delivery is crucial for drug evaluation, nanomedicine development, and gene therapy, in which high efficiency while maintaining cell viability is needed for downstream analysis. Here, an acoustic-mediated precise drug delivering mechanism is proposed by directly modulating cell micro-oscillation mode and membrane permeability. Through phase shifting keying-based spatiotemporal acoustic tweezers, controllable oscillating cell arrays can be achieved in shaking potentials.

View Article and Find Full Text PDF

Electrically powered solitons are particle-like field configurations in out-of-equilibrium nematics that have garnered significant interest. However, their random generation and lack of controllable motion have limited their application. Here, we present a reconfigurable optoelectronic approach capable of regulating the entire lifecycle of solitons by utilizing multi-strategy digital light projection to construct delicate patterning of virtual electrode.

View Article and Find Full Text PDF

Oocytes protective drug screening is essential for the treatment of reproductive diseases. However, few studies construct the oocyte in vitro drug screening microfluidic systems because of their enormous size, scarcity, and sensitivity to the culture environment. Here, we present an optofluidic system for oocyte drug screening and state analysis.

View Article and Find Full Text PDF
Article Synopsis
  • High-resolution bioimaging is crucial for life sciences, and new techniques using microspheres with optical microscopes show promise for overcoming image resolution limits.
  • This study demonstrates a method using acoustic waves to arrange and control microsphere superlens arrays, enabling effective and flexible imaging of targets like nanostructures and biological cells.
  • The proposed acoustic superlens array offers a significant efficiency improvement—over 100 times that of single lenses—making it a cost-effective solution for enhancing super-resolution microscopy.
View Article and Find Full Text PDF

Liquid crystals are a vital component of modern photonics, and recent studies have demonstrated the exceptional sensing properties of stimuli-responsive cholesteric liquid crystals. However, existing cholesteric liquid crystal-based sensors often rely on the naked eye perceptibility of structural color or the measurement of wavelength changes by spectrometric tools, which limits their practical applications. Therefore, developing a platform that produces recognizable sensing signals is critical.

View Article and Find Full Text PDF

Arrangement patterns and geometric cues have been demonstrated to influence cell function and fate, which calls for efficient and versatile cell patterning techniques. Despite constant achievements that mainly focus on individual cells and uniform cell patterns, simultaneously constructing cellular arrangements with diverse patterns and positional relationships in a flexible and contact-free manner remains a challenge. Here, stem cell arrangements possessing multiple geometries and structures are proposed based on powerful and diverse pattern-building capabilities of quasi-periodic acoustic fields, with advantages of rich patterns and structures and flexibility in structure modulation.

View Article and Find Full Text PDF

Highly heterogeneous structures are closely related to the realization of the tissue functions of living organisms. However, precisely controlling the assembly of heterogeneous structures is still a crucial challenge. This work presents an on-demand bubble-assisted acoustic method for active cell patterning to achieve high-precision heterogeneous structures.

View Article and Find Full Text PDF

The quick and convenient fabrication of tumor spheroids models has been pursued for clinical drug discovery and personalized therapy. Here, uniform three-dimensional (3D) tumor spheroids are quickly constructed by acoustically excited bubble arrays in a microfluidic chip and performed drug response testing . In detail, bubble oscillation excited by acoustic waves induces second radiation force, resulting in the cells rotating and aggregating into tumor spheroids, which obtain controllable sizes ranging from 30 to 300 μm.

View Article and Find Full Text PDF

Microlens arrays (MLAs) are acquiring a key role in the micro-optical system, which have been widely applied in the fields of imaging processing, light extraction, biochemical sensing, and display technology. Compared with solid MLAs, liquid MLAs have received extensive attention due to their natural smooth interface and adjustability. However, manufacturing tunable liquid MLAs with ideal structures is still a key challenge for current technologies.

View Article and Find Full Text PDF

Microlens arrays (MLAs) are key micro-optical components that possess a high degree of parallelism and ease of integration. However, rapid and low-cost fabrication of MLAs with flexible focusing remains a challenge. Herein, liquid MLAs with dynamic tunability are presented using non-contact acoustic relocation of inhomogeneous fluids.

View Article and Find Full Text PDF

In this study, Lepidotrigla microptera were hydrolyzed with four different proteolytic enzymes (Papain, neutrase, flavourzyme, and alcalase), and their distribution of molecular weights and ACE-inhibitory activity were tested. The alcalase hydrolysates showed the maximum ACE-inhibitory activity. A novel ACE-inhibitory peptide was isolated and purified from Lepidotrigla microptera protein hydrolysate (LMPH) using ultrafiltration, gel filtration chromatography, and preparative high performance liquid chromatography (prep-HPLC).

View Article and Find Full Text PDF

Precise and flexible three-dimensional (3D) cell construct assembly using external forces or fields can produce micro-scale cellular architectures with intercellular connections, which is an important prerequisite to reproducing the structures and functions of biological systems. Currently, it is also a substantial challenge in the bioengineering field. Here, we propose a smart acoustic 3D cell assembly strategy that utilizes a 3D printed module and hydrogel sheets.

View Article and Find Full Text PDF

Circulating tumor cells (CTCs) are rare, meaning that current isolation strategies can hardly satisfy efficiency and cell biocompatibility requirements, which hinders clinical applications. In addition, the selected cells require immunofluorescence identification, which is a time-consuming and expensive process. Here, we developed a method to simultaneously separate and identify CTCs by the integration of optical force and fluorescent microspheres.

View Article and Find Full Text PDF

As a crucial biophysical property, red blood cell (RBC) deformability is pathologically altered in numerous disease states, and biochemical and structural changes occur over time in stored samples of otherwise normal RBCs. However, there is still a gap in applying it further to point-of-care blood devices due to the large external equipment (high-resolution microscope and microfluidic pump), associated operational difficulties, and professional analysis. Herein, we revolutionarily propose a smart optofluidic system to provide a differential diagnosis for blood testing via precise cell biophysics property recognition both mechanically and morphologically.

View Article and Find Full Text PDF

Compound eyes are ubiquitous natural biosensors that possess high temporal resolution and large fields of view (FOVs). While for solid materials based artificial imaging systems, flexible zooming ability while keeping the constant FOV is still challenging, as well as the low-cost fabrication. Herein, liquid compound eyes with natural structures are presented that synthesize optofluidics and bionics in a non-trivial manner, which enables the deformation-free zooming and flexible cell fluorescence sensing.

View Article and Find Full Text PDF

Rapid and personalized single-cell drug screening testing plays an essential role in acute myeloid leukemia drug combination chemotherapy. Conventional chemotherapeutic drug screening is a time-consuming process because of the natural resistance of cell membranes to drugs, and there are still great challenges related to using technologies that change membrane permeability such as sonoporation in high-throughput and precise single-cell drug screening with minimal damage. In this study, we proposed an acoustic streaming-based non-invasive single-cell drug screening acceleration method, using high-frequency acoustic waves (>10 MHz) in a concentration gradient microfluidic device.

View Article and Find Full Text PDF

Continuous measurement of dissolved oxygen (DO) is essential for water quality monitoring and biomedical applications. Here, a phosphorescence quenching-based intelligent dissolved oxygen sensor on an optofluidic platform for continuous measurement of dissolved oxygen is presented. A high sensitivity dissolved oxygen-sensing membrane was prepared by coating the phosphorescence indicator of platinum(II) meso-tetrakis(pentafluorophenyl)porphyrin (PtTFPP) on the surface of the microfluidic channels composed of polydimethylsiloxane (PDMS) microstructure arrays.

View Article and Find Full Text PDF

Determining the nitrate levels is critical for water quality monitoring, and traditional methods are limited by high toxicity and low detection efficiency. Here, rapid nitrate determination was realized using a portable device based on innovative three-dimensional double microstructured assisted reactors (DMARs). On-chip nitrate reduction and chromogenic reaction were conducted in the DMARs, and the reaction products then flowed into a PMMA optical detection chip for absorbance measurement.

View Article and Find Full Text PDF

Polycystic ovary syndrome (PCOS) is a life-long reproductive, endocrine, and metabolic disorder that affects up to 17% of women of reproductive age. However, the effect of granulosa cells (GCs) transcriptome changes on oocyte capacity and follicular development in patients with PCOS has not been elucidated. This study aims to analyze transcriptome changes in GCs of PCOS from different perspectives and explore potential biomarkers for the diagnosis and treatment of PCOS.

View Article and Find Full Text PDF

A high-throughput cell-assembly method, with the advantages of adjustability, ease of operation, and good precision, is remarkable for artificial tissue engineering. Here, we present a scientific solution by introducing high rotational symmetrical coherent acoustic waves, in order to enable the shape and arrangement of the acoustic potential wells to be flexibly modulated, and therefore to assemble on a large area diverse biomimetic arrays on a microfluidic platform. Ring arrays, honeycomb, and many other biomimetic arrays are achieved by real-time modulation of the wave vectors and phase relation of acoustic beams from six directions.

View Article and Find Full Text PDF

Multicellular aggregates in three-dimensional (3D) environments provide novel solid tumor models that can provide insight into in vivo drug resistance. Such models are therefore essential for developing new drugs and preventing the failure of clinical treatments. However, high-throughput cell cluster assembly and fabricating individual 3D environments that mimic the extracellular matrix (ECM) remain significant challenges.

View Article and Find Full Text PDF

Here, a portable and accurate phosphate sensor using a gradient Fabry-Pérot array (FPA) is proposed. It can form a bidirectional gradient concentration (absorbance) distribution in the gradient FPA, simplifying the complex operations to get a standard curve and saving time. The gradient FPA can effectively filter out the interference (bubbles, light intensity, and salinity) while improving the absorbance, achieving a highly accurate and stable detection.

View Article and Find Full Text PDF

Dissolved oxygen (DO) content is an essential indicator for evaluating the quality of the water body and the main parameter for water quality monitoring. The development of high-precision DO detection methods is of great significance. This paper reports an integrated optofluidic device for the high precision measurement of dissolved oxygen based on the characteristics of silver nanoprisms.

View Article and Find Full Text PDF

Determining the distributions and variations of chemical elements in oceans has significant meanings for understanding the biogeochemical cycles, evaluating seawater pollution, and forecasting the occurrence of marine disasters. The primary chemical parameters of ocean monitoring include nutrients, pH, dissolved oxygen (DO), and heavy metals. At present, ocean monitoring mainly relies on laboratory analysis, which is hindered in applications due to its large size, high power consumption, and low representative and time-sensitive detection results.

View Article and Find Full Text PDF

Precise isolation of circulating tumor cells (CTCs) is proved to be significant for early cancer diagnosis and downstream analysis. Most of the existing strategies yield low purity or cause unexpected damage to cells because of foreign material introduction. To avoid foreign material caused damage and achieve high efficiency simultaneously, this work presents an innovative strategy using tumor cell targeting molecules to bind homologous red blood cells (RBCs) with tumor cells, which results in obvious optical constant differences (both size and mean refractive index) between CC-RBCs (RBC conjugated CTCs) and other blood cells.

View Article and Find Full Text PDF