Pollutant attenuation in aquifers due to the reactivity of in situ reduced iron minerals (RIM) under dynamic redox conditions has gained popularity because of its value in designing green and sustainable strategies for soil and groundwater remediation. In this study, a novel approach that integrates RIM-based kinetic modeling in reactive transport modeling was initiated to predict trichloroethene (TCE) attenuation in RIM-containing aquifers. The kinetic model was optimized and simplified based on previous efforts and verified with data from batch experiments (R > 0.
View Article and Find Full Text PDFThis study examines the efficacy and environmental impact of peracetic acid (PAA) activated by thermally modified activated carbon (AC600) for degrading antibiotics in actual groundwater. Laboratory-scale experiments evaluated the system's effects on contaminant degradation, ecological balance, and substance cycling in the hyporheic zone. Our findings demonstrated the effectiveness of the AC600/PAA system in removing sulfamethoxazole (SMX) from groundwater porous media.
View Article and Find Full Text PDFCl activated peroxymonosulfate (PMS) oxidation technology can effectively degrade pollutants, but the generation of chlorinated disinfection byproducts (DBPs) limits the application of this technology in water treatment. In this study, a method of nanobubbles (NBs) synergistic Cl/PMS system was designed to try to improve this technology. The results showed the synergistic effects of NBs/Cl/PMS were significant and universal while its upgrade rate was from 12.
View Article and Find Full Text PDFNanobubbles (NBs), given their unique properties, could theoretically be paired with rhamnolipids (RL) to tackle polycyclic aromatic hydrocarbon contamination in groundwater. This approach may overcome the limitations of traditional surfactants, such as high toxicity and low efficiency. In this study, the remediation efficiency of RL, with or without NBs, was assessed through soil column experiments (soil contaminated with phenanthrene).
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) in aquatic environments are threatening ecosystems and human health. In this work, an effective and environmentally friendly catalyst based on biochar and molecular imprinting technology (MIT) was developed for the targeted degradation of PAHs by activating peroxymonosulfate. The results show that the adsorption amount of naphthalene (NAP) by molecularly imprinted biochar (MIP@BC) can reach 82% of the equilibrium adsorption capacity within 5 min, and it had well targeted adsorption for NAP in the solution mixture of NAP, QL and SMX.
View Article and Find Full Text PDFHerein, biochar was prepared using rice straw, and it served as the peroxymonosulfate (PMS) activator to degrade naphthalene (NAP). The results showed that pyrolysis temperature has played an important role in regulating biochar structure and properties. The biochar prepared at 900°C (BC900) had the best activation capacity and could remove NAP in a wide range of initial pH (5-11).
View Article and Find Full Text PDFCadmium (Cd) has impacted groundwater resources and can pose a serious threat to human health and the environment. Its fate in groundwater is complex and challenging to predict, as it is affected by adsorption to sediments, complexation with aqueous phase ligands, and variations in hydraulic conductivity. In this study, a 2D reactive transport model based on MODFLOW and RT3D is used to simulate published experimental results of cadmium migration without and with EDTA present in a flow cell containing high- and low-permeability zones (i.
View Article and Find Full Text PDFReactive oxygen species generated during the oxygenation of different ferrous species have been documented at groundwater field sites, but their effect on pollutant destruction remains an open question. To address this knowledge gap, a kinetic model was developed to probe mechanisms of •OH production and reactivity with trichloroethene (TCE) and competing species in the presence of reduced iron minerals (RIM) and oxygen in batch experiments. RIM slurries were formed by combining different amounts of Fe(II) and sulfide (with Fe(II):S ratios from 1:1 to 50:1) or Fe(II) and sulfate with sulfate reducing bacteria (SRB) added.
View Article and Find Full Text PDFCo-transport of colloidal substances and pollutants is a pivotal link that significantly affects the environment of coastal groundwater. The effect of colloid mobilization and aquifer pore structure change on heavy metal transport driven by seawater-freshwater interface dynamics is not fully understood. In this study, packed column experiments were conducted to model the seawater intrusion (SWI) and freshwater replenishment (FWR) processes using a sampled medium from a coastal sandy aquifer.
View Article and Find Full Text PDFNanomaterials are threatening the environment and human health, but there has been little discussion about the stability and mobility of nanoparticles (NPs) in saturated porous media at environmentally relevant concentrations of surfactants, which is a knowledge gap in exploring the fate of engineered NPs in groundwater. Therefore, the influences of the anionic surfactant (sodium dodecylbenzene sulfonate, SDBS), the cationic surfactant (cetyltrimethylammonium bromide, CTAB), and the nonionic surfactant (Tween-80) with environmentally relevant concentrations of 0, 5, 10, and 20 mg/L on nano-TiO (nTiO, negatively charged) and nano-CeO (nCeO, positively charged) transport through saturated porous media were examined by column experiments. On the whole, with increasing SDBS concentration from 0 to 20 mg/L, the concentration peak of nTiO and nCeO in effluents increased by approximately 0.
View Article and Find Full Text PDFAs natural agroecology deteriorates, controlled environment agriculture (CEA) systems become the backup support for coping with future resource consumption and potential food crises. Compared with natural agroecology, most of the environmental parameters of the CEA system rely on manual management. Such a system is dependent and fragile and prone to degradation, which includes harmful bacteria proliferation and productivity decline.
View Article and Find Full Text PDFIn recent decades, water quality problems that impact human health, especially groundwater pollution, have been intensely studied, and this has contributed to new ideas and policies around the world such as Low Impact Development (LID) and Superfund legislation. The fundamental to many of these problems is pollutant occurrence and migration in saturated porous media, especially in groundwater. Such environments often contain contrasting zones of high and low permeability with significant differences in hydraulic conductivity (~10 and 10 m/s, respectively).
View Article and Find Full Text PDFEthylenediaminetetraacetic acid (EDTA) can serve as a washing agent in the remediation of low-permeability layers contaminated by heavy metals (HMs). Therefore, batch adsorption experiments, where pure quartz (SM1) and mineral mixtures (SM2) were used as typical soil minerals (SMs) in low-permeability layers, were implemented to explore the effects of different EDTA concentrations, pH, and exogenous chemicals on the HM-SM-EDTA adsorption system. As the EDTA concentration increased, it gradually cut down the maximum Cd adsorption capacities of SM1 and SM2 from approximately 135 to 55 mg/kg and 2660 to 1453 mg/kg; and the maximum Pb adsorption capacities of SM1 and SM2 were reduced from 660 to 306 mg/kg and 19,677 to 19,262 mg/kg, respectively.
View Article and Find Full Text PDFTransport of environmental pollutants in groundwater systems can be greatly influenced by colloids. In this study, the cotransport of Pb and silica (SiO) colloids at different Pb concentrations was systematically investigated by batch adsorption and saturated sand column experiments. Results showed that SiO colloids had low adsorption capacity for Pb (less than 1% of the input) compared with sands.
View Article and Find Full Text PDFPollutant accumulation in the low-permeability zones (LPZs) in groundwater systems is regarded as a secondary source, and its consequent back-diffusion can extend the timeframe of pump-and-treat remediation. However, the bioavailability and mobility of heavy metals and the medium characteristics can be changed during the process. This study investigated the accumulation and back-diffusion law of toxic metals and the effects of ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) on them by implementing a series of tank experiments.
View Article and Find Full Text PDF