Publications by authors named "Xuehui Hao"

Flexible and transparent surface-enhanced Raman scattering (SERS) substrates haveattractedmuchattention as a fast, sensitive and in situ detection platform for practical applications. However, the large-area fabrication of flexible and transparent SERS substrates with high performance is still challenging. Here, a flexible and transparent SERS substrate based on large-area thin PDMS film decorated with Ag microlabyrinth/nanoparticles hierarchical structures (denoted as ALNHS@PDMS) is fabricated by using the floating-on-water method and magnetron sputtering technology.

View Article and Find Full Text PDF

The large-area fabrication of flexible and transparent surface-enhanced Raman scattering (SERS) substrates with high performance by a facile and efficient method is still challenging. Here, we demonstrated a large-scale, flexible and transparent SERS substrate composed of PDMS nanoripple array film decorated with silver nanoparticles (Ag NPs@PDMS-NR array film) prepared by a combination of plasma treatment and magnetron sputtering. The performances of SERS substrates were characterized by rhodamine 6G (R6G) using a handheld Raman spectrometer.

View Article and Find Full Text PDF

With the development of flexible surface-enhanced Raman spectroscopy (SERS) substrates that can realize rapid detection, the SERS technique accompanied by miniaturized Raman spectrometers holds great promise for point-of-care testing (POCT). For an detection strategy, constructing high-performance flexible and transparent SERS substrates through a facile and cost-effective fabrication method is critically important. Herein, we present a simple method for fabricating a large-area flexible and transparent SERS substrate consisting of a silver-nanoparticle-grafted wrinkled polydimethylsiloxane (Ag NPs@W-PDMS) film, using a surface-wrinkling technique and magnetron sputtering technology.

View Article and Find Full Text PDF

Colorectal cancer is one of the most serious tumors and berberine can inhibit the recurrence and transformation of colorectal adenoma into colorectal cancer. However, the direct binding target proteins of berberine in inhibiting colorectal cancer remain unclear. In this study, the chemical proteomics method was used and demonstrated that berberine is directly bound to pyruvate kinase isozyme type M2 (PKM2) in colorectal cancer cells.

View Article and Find Full Text PDF

Background: Colitis-associated cancer (CAC) is known to be a complex combination of tumor cells, non-tumor cells and a large intestinal flora. The increasing role of intestinal flora in CAC may represent a new approach to improving CAC treatment. Berberine can reduce colorectal adenoma recurrence and inhibit colorectal carcinogenesis.

View Article and Find Full Text PDF

It is of great significance for electromagnetic interference (EMI) shielding materials to fulfill long-lasting service requirements. Here, waterborne polyurethane (WPU) was coated on the surface of a silver nanowire (AgNW) network with sputter-deposited nickel nanoparticles (NiNPs) by dip-coating technology to improve their durability. After five dip-coating cycles, a WPU layer nearly coated the whole surface of the hybrid papers, and only a fraction of the metal filler is bare.

View Article and Find Full Text PDF

Superhydrophobic, flexible, and ultrahigh-performance electromagnetic interference (EMI) shielding papers are of paramount importance to safety and long-term service under external mechanical deformations or other harsh service environments because they fulfill the growing demand for multipurpose materials. Herein, we fabricated multifunctional papers by incorporating sputter-deposited nickel nanoparticles (NiNPs) and a fluorine-containing coating onto cellulose filter papers coated with silver nanowires (AgNWs). AgNW networks with sputter-deposited NiNPs provide outstanding magnetic properties, electrical conductivity, and EMI shielding performance.

View Article and Find Full Text PDF

Inflammation, mitochondrial dysfunction and oxidative stress are closely associated with neurological diseases. In this study, Mn-TAT PTD-Ngb, a novel artificial recombinant protein, exerted inhibitory effects on the inflammatory response and inflammasome activation. During the lipopolysaccharide (LPS)-induced inflammatory response, Mn-TAT PTD-Ngb suppressed the nuclear translocation of nuclear factor kappa B (NF-κB) and the release of proinflammatory cytokines and attenuated the phosphorylation of mitogen-activated protein kinase (MAPK).

View Article and Find Full Text PDF

Neurological diseases have a close relationship to excessive reactive oxygen species (ROS). Neuroglobin (Ngb), an intrinsic protective factor, protected cells from hypoxic/ischemic injury. In the present, we reported a novel neuroprotective manganese porphyrin reconstituted metal protein, Mn-TAT PTD-Ngb, consisting of a HIV Tat protein transduction domain sequence (TAT PTD) attached to the N-terminal of apo-Ngb.

View Article and Find Full Text PDF

Non-healing fractures constitute a serious clinical problem. HIF-1α is a crucial regulator in response to hypoxia and is proven to be pivotal in bone growth; however, the mechanism still needs further research. In this study, iTRAQ was used to study the effects of two HIF-1α inducers on the expression of proteins in MG63 cells.

View Article and Find Full Text PDF