Publications by authors named "Xuehong Ren"

The design and fabrication of synergistic hybrid antibacterial materials is a promising approach for achieving effective sterilization while compensating for the deficiency of a single component. Despite being highly effective biocidal components, the poor UV light stability of some N-halamines limits their applications. This study was conducted to address this issue by the rational integration of cyclic N-halamine precursor (PGHAPA) with microwaved zinc oxide (MWPPy-ZnO) nanoparticles via covalent bonds and the preparation of cellulose nanofibrils based antibacterial composite films after chlorination (CNF/MWPPy-ZnO-PGHAPA-Cl).

View Article and Find Full Text PDF

Developing durable protective cotton fabrics (CF) against potential environmental dangers such as fire hazards and bacterial growth remains an imperative but tough challenge. In this study, flame retardant, antibacterial and hydrophobic CF were successfully prepared via two-step coating. The inner coating entailed polyelectrolyte complexes consisting of polyethyleneimine and ammonium polyphosphate with the goal of enhancing the flame retardancy of CF.

View Article and Find Full Text PDF

In this paper, the possibility of retreated lithium slag (RTLS) with a high content of alkali, sulfate and fluoride as a partial replacement for fly ash (FA) to produce autoclaved aerated concrete (AAC) was investigated. The influence of the RTLS dosage on the AAC performance were examined. The composition and microstructure of hydrates as well as the microstructure of the RTLS-FA-based AAC compositions were determined by XRD, FTIR, TG-DSC and SEM.

View Article and Find Full Text PDF

Background: The influence of total en bloc spondylectomy (TES) on spinal stability is substantial, necessitating strong fixation to restore spinal stability. The transverse connector (TC) serves as a posterior spinal instrumentation that connects the left and right sides of the pedicle screw-rod system. Several studies have highlighted the potential of a TC in enhancing the stability of the fixed segments.

View Article and Find Full Text PDF

Nanofibrillated cellulose (NFC)-based aerogels have been widely used for various applications. However, the disadvantages of poor structural stability, low mechanical toughness, and easy contamination by bacteria hinder their large-scale application. In this work, 3-(3'-acrylicacidpropylester)-5,5-dimethyl hydantoin (APDMH) was grafted on oxidized NFC (ONC) to prepare antibacterial poly(APDMH)--ONC (PAC).

View Article and Find Full Text PDF

Lignin and its derivatives can be used to make membranes with natural polymer materials for its properties including ultraviolet adsorption, biodegradable, antibacterial, and antioxidant. However, the lignin film has poor transparency due to the dark color, and how to control the proportion of each component to enhance properties is the main research topic. In this study, a polyvinyl alcohol /alkaline lignin (PVA/AL) composite film with excellent UV-shielding and visible-transparent performance successfully prepared by solution casting.

View Article and Find Full Text PDF

Anti-infections therapy accompanied with effective hemorrhage control is highly urgent in clinics. Herein, a biomimetic nanoreactor encapsulated self-healing hydrogel with glucose-responsive catalytic activity was constructed for synergetic antibacterial defense and hemostasis. A metal-organic frameworks (MOF)-based nanocatalyst loaded with glucose oxidase (GOx) was fabricated and encapsulated in the bacterial cellulose (BC) reinforced hydrogel, while the sustained release of GOx could catalyze the decomposition of glucose for triggering the MOF-mediated catalytic activity to in situ generate OH for bacteria killing.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) for treating bacterial infection is an alternative strategy to overcome the drawbacks such as bacterial resistance of commonly used antibiotics. Nanocatalysts have been proved highly effective in regulating intracellular ROS level due to their intrinsic enzymes-mimicking ability. Herein, we prepared a carbon-based nanozyme doped with copper atoms with peroxidase mimetic activity to catalyze the decomposition of bio-safety dosage of HO to highly reactive OH radicals for antibacterial treatment.

View Article and Find Full Text PDF

Bacterial infections are the major challenges of wound treatment in current clinical applications. In this study, Three-dimensional (3D) antibacterial wound dressing has been fabricated via introducing N-halamine/TiO to gelatin methacrylate and xanthan gum. The prepared 3D printed dressings showed ideal swelling ratio and excellent water uptake efficiency.

View Article and Find Full Text PDF

Electrospinning provides a versatile, efficient and low-cost method for the preparation of continuous nanofibres from various polymers. In this study, the polyhedral oligomeric silsesquioxanes (POSS) block copolymer was synthesized via atom transfer radical polymerization. The smooth fiber, porous fiber or hierarchically porous microspheres were prepared by electrospinning from POSS block copolymer, poly(vinylidene fluoride) (PVDF) and aluminium oxide (AlO).

View Article and Find Full Text PDF

In this study, we constructed a novel family of chitosan-based cryogels with antibacterial activity to treat different types of dye wastewater. Glycidyl methacrylate (GMA) cross-linked chitosan (CS) cryogels functionalized with negatively and positively molecules were prepared via thermo-crosslinking and freeze-drying methods. These chitosan-based cryogels present a well-defined three-dimensional microporous network structure with ultra-light and high porosity, and have high water absorption ability.

View Article and Find Full Text PDF

Developing a new family of hydrogel-based wound dressings that could have a dual biofunctionality of antibacterial and biological responses is highly desirable. In this study, an inherently effective antibacterial and biodegradable hydrogel dressing without the need for impregnated antibiotics was designed, synthesized, characterized, and examined for its effect on macrophages, which initiated inflammatory activity and activated both NO and TNF-α production for the purpose of achieving a better and faster wound healing. The purposes of this research was to develop a novel family of cationic biodegradable hydrogels based on arginine-based poly(ester urea urethane) (Arg-PEUU) and glycidyl methacrylate-modified chitosan (CS-GMA) that has both inherent antibacterial and bioactive functionality as a wound healing dressing for accelerated healing of contaminated or infected wounds.

View Article and Find Full Text PDF

In this work, a novel chitosan based structure (CS/EVC) with low density, high porosity, three-dimensional porous structure and great adsorption capability has been prepared by using 1,2-epoxy-4-vinyl cyclohexane (EVC) as a cross-linker. After immersing CS/EVC in N-halamine 1-chloro-2,2,5,5-tetramethyl-4-imidazolinone (MC) solution, antibacterial CS/EVC/MC compounds were obtained. Compared with chitosan and CS/EVC controls, CS/EVC/MC showed excellent antimicrobial activities, which could inactivate both more than 6 logs (×1/1,000,000) of Staphylococcus aureus (ATCC 6538) and Escherichia coli (ATCC 8099) within 30 and 10 min, respectively.

View Article and Find Full Text PDF

Cellulose is one of the most hydrophilic polymers with sufficient water holding capacity but it is unstable in aqueous conditions and it swells. Cellulose itself is not suitable for electrospun nanofibers' formation due to high swelling, viscosity, and lower conductivity. Carboxymethyl cellulose (CMC) is also super hydrophilic polymer, however it has the same trend for nanofibers formation as that of cellulose.

View Article and Find Full Text PDF

Microbial contamination and biofilm formation cause serious issues in medical, household, industrial and environmental applications. In this study, a series of cationic and anionic N-halamine polymeric precursors, poly (N,N-dimethyl-N-decyl ammonium ethyl methacrylate-co-methacrylamide) (PQDM) and poly (acrylic acid-co-methacrylamide) (PAM), were synthesized and coated onto cotton fabrics through the layer-by-layer (LBL) assembly technique. The coated LBL cotton swatches were characterized by Scanning Electron Microscopy, Fourier transform infrared spectroscopy, and contact angle evaluation.

View Article and Find Full Text PDF

Bacterial cellulose (BC) is a natural polymer with remarkable superiority for fabricating biomaterials. In this study, a multiporous bacterial cellulose (MBC) film was modified with N-isopropylacrylamide (NIPAM), and the modified MBC film was imbued with antibacterial properties after chlorination. The dried chlorinated samples showed superb antibacterial efficacy and could inactivate 6.

View Article and Find Full Text PDF

The aim of this study was to develop novel nanofibrous membranes based on the quaternary ammonium N-halamine chitosan (CSENDMH) and polyvinyl alcohol (PVA) for antibacterial and hemostasis wound dressing. To improve the antimicrobial properties of nanofibrous membranes, a new chitosan-quaternary ammonium N-halamine derivative was successfully synthesized, and the structure was analyzed by 1H NMR and 13C NMR, fourier transform infrared (FTIR) spectroscopy, and elemental analysis. The morphological and water absorption ability studies showed that the membrane had a uniform bead-free network and high porosity structure like natural extracellular matrix as well as high hydrophilicity.

View Article and Find Full Text PDF

Herein, we demonstrated a one-step route for the manufacturing of polypyrrole (PPy)/zinc nanohybrids with tunable elemental composition and nanoscale component mixing resolution by using an ultrafast (within tens of seconds) microwave approach for ultrasensitive DNA biosensors. The zinc-based nanoparticles (i.e.

View Article and Find Full Text PDF

Fungal biofilm formation is an emerging problem in a wide range of health-related applications. This study aims to design and synthesize amphiphilic quaternary ammonium chitosans (AQACs) that could bind onto fungal biofilms to kill adherent fungal cells, and establish their structural/fungicidal activity relationships. AQACs with different hydrophobic alkyl chain length (C, C, and C) were synthesized by quaternization of 3-bromopropionic acid with the corresponding tertiary amines, followed by reacting with chitosan using the EDC/NHS chemistry.

View Article and Find Full Text PDF

Formation of fungal biofilms on health care-related materials causes serious clinical consequences. This study reports a novel fungal repelling strategy to control fungal biofilm formation on denture biomaterials through layer-by-layer self-assembly (LBL). Amphiphilic quaternary ammonium chitosans (CS612) were synthesized and used as the antimicrobial positive layer, and sodium alginate (SA) was chosen as the negative layer to construct LBL multilayers on poly (methyl methacrylate) (PMMA)-based denture materials.

View Article and Find Full Text PDF

Cutaneous hemorrhage often occurs in daily life which may cause infection and even amputation. This research aims to develop a novel chitosan dressing impregnated with ZnO/N-halamine hybrid nanoparticles for quick antibacterial performance, outstanding hemostatic potential, high porosity, and favorable swelling property through combining sonication and lyophilization processing. After 30 days of storage, about 90% bacterial cell viability loss could be observed toward both Gram-positive and Gram-negative O157:H7 within 30 min of contact by colony counting method.

View Article and Find Full Text PDF

N-halamine compounds have been applied as antibacterial agents owing to the oxidative chlorine. In this work, graphene oxide (GO) as carrier was used to load N-halamine compounds for the sustained-release of chlorine in order to maintain long-term biocidal efficacies. 3‑(3'‑Acrylic acid propylester)‑5,5‑dimethylhydantoin (APDMH) was synthesized using 5,5‑dimethylhydantoin as a heterocyclic precursor and attached on the surface of GO nanosheets via in-situ polymerization.

View Article and Find Full Text PDF

In order to prepare multifunctional fibrous membranes with hydrophobicity, antibacterial properties and UV resistance, we used silica and titanium dioxide for preparing SiO@TiO nanoparticles (SiO@TiO NPs) to create roughness on the fibrous membranes surfaces. The introduction of TiO was used for improving UV resistance. N-Halamine precursor and silane precursor were introduced to modify SiO@TiO NPs to synthesize SiO@TiO-based core@shell composite nanoparticles.

View Article and Find Full Text PDF