Objectives: Resistance to apoptosis in esophageal squamous cell carcinoma (ESCC) constitutes a significant impediment to treatment efficacy. Exploring alternative cell death pathways and their regulatory factors beyond apoptosis is crucial for overcoming drug resistance and enhancing therapeutic outcomes in ESCC.
Methods: Mammalian Ste 20-like kinase 1 (MST1) is implicated in regulating various cell deaths, including apoptosis, autophagy, and pyroptosis.
Tumor-infiltrating B-lineage cells have become predictors of prognosis and immunotherapy responses in various cancers. However, limited knowledge about their infiltration and migration patterns has hindered the understanding of their anti-tumor functions. Here, we examined the immunoglobulin heavy chain (IGH) repertoires in 496 multi-regional tumor, 107 normal tissue, and 48 metastatic lymph node samples obtained from 107 patients with esophageal squamous cell carcinoma (ESCC).
View Article and Find Full Text PDFTraditional carrier screening has been utilized for the detection of carriers of genetic disorders. Since a comprehensive assessment of the carrier frequencies of recessive conditions in the Southern Chinese population is not yet available, we performed a secondary analysis on the spectrum and carrier status for 315 genes causing autosomal recessive disorders in 1543 Southern Chinese individuals with next-generation sequencing data, 1116 with exome sequencing and 427 with genome sequencing data. Our data revealed that 1 in 2 people (47.
View Article and Find Full Text PDFTetralogy of Fallot (TOF) is the most common cyanotic heart defect, yet the underlying genetic mechanisms remain poorly understood. Here, we performed whole-genome sequencing analysis on 146 nonsyndromic TOF parent-offspring trios of Chinese ethnicity. Comparison of de novo variants and recessive genotypes of this data set with data from a European cohort identified both overlapping and potentially novel gene loci and revealed differential functional enrichment between cohorts.
View Article and Find Full Text PDFNAR Genom Bioinform
September 2020
Detection of copy number variations (CNVs) is essential for uncovering genetic factors underlying human diseases. However, CNV detection by current methods is prone to error, and precisely identifying CNVs from paired-end whole genome sequencing (WGS) data is still challenging. Here, we present a framework, CNV-JACG, for udging the ccuracy of NVs and enotyping using paired-end WGS data.
View Article and Find Full Text PDFBackground & Aims: Hirschsprung disease, or congenital aganglionosis, is believed to be oligogenic-that is, caused by multiple genetic factors. We performed whole-genome sequence analyses of patients with Hirschsprung disease to identify genetic factors that contribute to disease development and analyzed the functional effects of these variants.
Methods: We performed whole-genome sequence analyses of 443 patients with short-segment disease, recruited from hospitals in China and Vietnam, and 493 ethnically matched individuals without Hirschsprung disease (controls).
Hirschsprung disease (HSCR) is a complex birth defect characterized by the lack of ganglion cells along a variable length of the distal intestine. A large proportion of HSCR patients remain genetically unexplained. We applied whole-genome sequencing (WGS) on 9 trios where the probands are sporadically affected with the most severe form of the disorder and harbor no coding sequence variants affecting the function of known HSCR genes.
View Article and Find Full Text PDFBackground: Cases of multiple tumors are rarely reported in China. In our study, a 57-year-old female patient had concurrent squamous cell carcinoma, mucoepidermoid carcinoma, brain cancer, bone cancer, and thyroid cancer, which has rarely been reported to date.
Methods: To determine the relationship among these multiple cancers, available DNA samples from the thyroid, lung, and skin tumors and from normal thyroid tissue were sequenced using whole exome sequencing.
The human major histocompatibility complex (MHC) region has been shown to be associated with numerous diseases. However, it remains a challenge to pinpoint the causal variants for these associations because of the extreme complexity of the region. We thus sequenced the entire 5-Mb MHC region in 20,635 individuals of Han Chinese ancestry (10,689 controls and 9,946 patients with psoriasis) and constructed a Han-MHC database that includes both variants and HLA gene typing results of high accuracy.
View Article and Find Full Text PDFBladder cancer (BC) is distinguished by high rate of recurrence after surgery, but the underlying mechanisms remain poorly understood. Here we performed the whole-exome sequencing of 37 BC individuals including 20 primary and 17 recurrent samples in which the primary and recurrent samples were not from the same patient. We uncovered that MLL, EP400, PRDM2, ANK3 and CHD5 exclusively altered in recurrent BCs.
View Article and Find Full Text PDFOesophageal cancer is one of the most aggressive cancers and is the sixth leading cause of cancer death worldwide. Approximately 70% of global oesophageal cancer cases occur in China, with oesophageal squamous cell carcinoma (ESCC) being the histopathological form in the vast majority of cases (>90%). Currently, there are limited clinical approaches for the early diagnosis and treatment of ESCC, resulting in a 10% five-year survival rate for patients.
View Article and Find Full Text PDFDespite an increase in the number of molecular epidemiological studies conducted in recent years to evaluate the association between human papillomavirus (HPV) and the risk of breast carcinoma, these studies remain inconclusive. Here we aim to detect HPV DNA in various tissues from patients with breast carcinoma using the method of HPV capture combined with massive paralleled sequencing (MPS). To validate the confidence of our methods, 15 cervical cancer samples were tested by PCR and the new method.
View Article and Find Full Text PDFWe reported HIVID (high-throughput Viral Integration Detection), a novel experimental and computational method to detect the location of Hepatitis B Virus (HBV) integration breakpoints in Hepatocellular Carcinoma (HCC) genome. In this method, the fragments with HBV sequence were enriched by a set of HBV probes and then processed to high-throughput sequencing. In order to evaluate the performance of HIVID, we compared the results of HIVID with that of whole genome sequencing method (WGS) in 28 HCC tumors.
View Article and Find Full Text PDF