Strategy selection is critical for constellation deployment missions, both in terms of energy consumption and time cost. The different effects of impulse thrust and continuous thrust on orbit elements lead to a different choice of strategy. With impulse thrust, constellation types are differentiated according to high and medium-low inclinations.
View Article and Find Full Text PDFBenefiting from the merits of low cost, ultrahigh-energy densities, and environmentally friendliness, metal-sulfur batteries (M-S batteries) have drawn massive attention recently. However, their practical utilization is impeded by the shuttle effect and slow redox process of polysulfide. To solve these problems, enormous creative approaches have been employed to engineer new electrocatalytic materials to relieve the shuttle effect and promote the catalytic kinetics of polysulfides.
View Article and Find Full Text PDFLi-S batteries are considered to be the most promising next-generation advanced energy-storage systems. However, the sluggish reaction kinetics and the "shuttle effect" of lithium polysulfides (LiPSs) severely limit their battery performances. To overcome the complex and multiphase sulfur redox chemistry of LiPSs, in this study, we propose a new type of cobalt-based double catalytic sites (DCSs) codoped mesoporous carbon to immobilize and reversibly catalyze the LiPS intermediates in the cycling process, thus eliminating the shuttle effect and improving the charge-discharge kinetics.
View Article and Find Full Text PDFMetal-sulfur batteries (MSBs) are considered up-and-coming future-generation energy storage systems because of their prominent theoretical energy density. However, the practical applications of MSBs are still hampered by several critical challenges, i.e.
View Article and Find Full Text PDFThe incorporation of porous supporting materials to prepare shape-stable phase change materials (PCMs) is of great interest in recent years. However, extensive reported composite PCMs are shape-stable in the air atmosphere but neglected in the water environment. To develop shape-stable and waterproof PCMs is important for their outdoor applications but challenging.
View Article and Find Full Text PDFMagnetic biochar derived from agricultural biomass has been recognized as a cost-effective biochar sorbent for phosphate removal. This study evaluated the use of novel Fe/Mg-biochar nanocomposites (WBC1x), prepared by impregnating ground walnut shell in a solution with a different molar ratio of Fe to Mg, then pyrolyzing slowly, at a temperature of 600 °C, to remove phosphate. The results showed that MgO and FeO were loaded onto the biochar successfully through the impregnation-pyrolysis method and the composites were able to be separated easily by magnetic field.
View Article and Find Full Text PDF