Publications by authors named "Xuefang Zha"

In the Karst Critical Zone (KCZ), mining and urbanization activities produce multiple pollutants, posing a threat to the vital groundwater and surface water resources essential for drinking and irrigation. Despite their importance, the interactions between these pollutants in the intricate hydrology and land use of the KCZ remain poorly understood. In this study, we unraveled the transformation mechanisms and sources of nitrogen, sulfate, and carbon using multiple isotopes and the MixSIAR model, following hydrology and surface analyses conducted in spatial modelling with ArcGIS.

View Article and Find Full Text PDF

Gold mining is associated with serious heavy metal pollution problems. However, the studies on such pollution caused by gold mining in specific geological environments and extraction processes remain insufficient. This study investigated the accumulation, fractions, sources and influencing factors of arsenic and heavy metals in the sediments from a gold mine area in Southwest China and also assessed their pollution and ecological risks.

View Article and Find Full Text PDF

Mining activities change the groundwater level and flow conditions through pumping and drainage, which enhances the interaction between groundwater and aquifer rocks; mine drainage is discharged into the surface water system, which affects the whole karst water hydrogeochemical process. Based on hydrogeochemistry and the S isotope, the hydrogeochemical processes, characteristics, and main controlling factors for waste water, karst groundwater, and surface water in a typical Carlin gold mining area and its surrounding areas were revealed. The results showed that:chemical compositions of groundwater and surface water unaffected by gold mining activities were mainly controlled by the weathering of limestone and dolomitic limestone; Ca, Mg, and HCO were main ions; and the water chemical types were Ca-HCO.

View Article and Find Full Text PDF

High fluoride water is a crucial driving factor for endemic fluorosis. As an important research content of hydrogeochemistry, the enrichment of fluorine in alkaline water has received a fair amount of scholarly attention, but the understanding of the migration and enrichment of fluorine in acid mine drainage (AMD) in karst area remains very limited. An analysis of 13 consecutive periods of hydrochemical samples (312 samples in total) revealed that the weathering of carbonates and sulfide-rich coal measures induced a pH as low as 2.

View Article and Find Full Text PDF

The generation of acid mine drainage (AMD) may accelerate watershed erosion and promote the migration of heavy metals, then threaten local ecosystems such as aquatic life and even human health. Previous studies have focused primarily on influence of AMD in surface environment. In order to reveal the acidizing processes in karst high-sulfur coalfield in Southwest China, this study, by contrast, focused on the hydrogeochemical evolution process and acidification mechanism of mine water in Zhijin coalfield, western Guizhou Province.

View Article and Find Full Text PDF

Zhijin coal-mining district, located in Midwestern Guizhou Province, has been extensively exploited for several decades. The discharge of acid mine drainage (AMD) has constituted a serious threat to local water environmental quality, which greatly affected the normal use of local people. The Permian limestone aquifer is the essential potable water supply for local people, which covered under the widely distributed coal seams.

View Article and Find Full Text PDF