Publications by authors named "Xuede Qi"

Heteroatom-doping has emerged as a transformative approach to producing high-performance catalysts, yet the current trial-and-error approach to optimize these materials remains ineffective. To enable the rational design of more efficient catalysts, models grounded in a deeper understanding of catalytic mechanisms are essential. Existing models, such as -band center theory, fall short in explaining the role of dopants, particularly when these dopants do not directly interact with reactants.

View Article and Find Full Text PDF

Lithium-sulfur batteries (LSBs) are among the most promising next-generation energy storage technologies. However, a slow Li-S reaction kinetics at the LSB cathode limit their energy and power densities. To address these challenges, this study introduces an anionic-doped transition metal chalcogenide as an effective catalyst to accelerate the Li-S reaction.

View Article and Find Full Text PDF

An FeN single-atom catalyst (SAC) embedded in a graphene matrix is considered an oxygen reduction reaction (ORR) catalyst for its good activity and durability, and decoration on the Fe active site can further modulate the performance of the FeN SAC. In this work, the axial heteroatom (L = P, S and Cl)-decorated FeN SAC (FeNL) and pure FeN were comparatively studied using density functional theory (DFT) calculations. It was found that the rate-determining step (RDS) in the ORR on pure FeN is the reduction of OH to HO in the last step with an overpotential of 0.

View Article and Find Full Text PDF
Article Synopsis
  • Lithium-sulfur batteries (LSBs) have great potential but face challenges like slow reactions and sulfur loss during use.
  • The study presents a one-step method to create tungsten phosphide nanoparticles on carbon nanosheets, enhancing battery performance by improving sulfur utilization and ion transport.
  • Experimental results show that this new separator leads to high capacity (close to 1500 mAh/g) and excellent stability in LSBs, providing an effective way to enhance overall battery efficiency.
View Article and Find Full Text PDF

The catalytic activation of the Li-S reaction is fundamental to maximize the capacity and stability of Li-S batteries (LSBs). Current research on Li-S catalysts mainly focuses on optimizing the energy levels to promote adsorption and catalytic conversion, while frequently overlooking the electronic spin state influence on charge transfer and orbital interactions. Here, hollow NiS/NiSe heterostructures encapsulated in a nitrogen-doped carbon matrix (NiS/NiSe@NC) are synthesized and used as a catalytic additive in sulfur cathodes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioncufepic01ov3m9j8agsra2pe4n99nvpr): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once