Publications by authors named "Xuechu Chen"

Ongoing wind energy developments play a key role in mitigating the global effects of climate change and the energy crisis; however, they have complex ecological consequences for many flying animals. The Yellow Sea coast is considered as an ecological bottleneck for migratory waterbirds along the East Asian-Australasian flyway (EAAF), and is also an important wind farm base in China. However, the effects of large-scale onshore wind farms along the EAAF on multidimensional waterbird diversity, and how to mitigate these effects, remain unclear.

View Article and Find Full Text PDF

Climate change provides an opportunity for the northward expansion of mangroves, and thus, the afforestation of mangroves at higher latitude areas presents an achievable way for coastal restoration, especially where invasive species S. alterniflora needs to be clipped. However, it is unclear whether replacing S.

View Article and Find Full Text PDF

The occurrence of large Microcystis biomass in brackish waters is primarily caused by its downward transportation from the upstream freshwater lakes and reservoirs through rivers rather than due to in situ bloom formation. Factors that determine the survival of freshwater cyanobacteria in brackish waters have not been well investigated. Here, we studied the spatiotemporal variability of inorganic nitrogen in an upstream lake and conducted laboratory and in-situ experiments to assess the role of nitrogen availability on the salt tolerance of Microcystis and the release of microcystins.

View Article and Find Full Text PDF

Denitrification is the most important process for nitrogen removal in eutrophic lakes and was mostly investigated in lake sediment. Denitrification could also be mediated by cyanobacterial aggregates, yet how this process impacts nitrogen (N) availability and the associated autotroph-heterotroph relationships within cyanobacterial aggregates has not been investigated. In this study, incubation experiments with nitrate amendment were conducted with Microcystis aggregates (MAs).

View Article and Find Full Text PDF

The eutrophication problem now threatens many lakes and reservoirs. To avoid the occurrence of algal blooms, some cities try to increase the flow rate or directly choose lakes or reservoirs with a short water residence time (WRT) as drinking water sources. However, up to now, whether such a strategy can achieve its goal is still unclear.

View Article and Find Full Text PDF

Nitrogen availability is one of the key factors affecting the dynamics of non-diazotrophic cyanobacterial blooms in eutrophic lakes. While previous studies mainly focused on the promoting effect of nitrogen on the growth of cyanobacteria, this study aimed to investigate the role of nitrogen availability in the downward transport of biomass and its effects on the dynamics of Microcystis blooms. We performed field enclosure experiments which demonstrated that nitrogen availability negatively affects the downward transport of biomass.

View Article and Find Full Text PDF

In this study, we reported a practice at northern Hangzhou Bay, southeast China aimed at restoring coastal wetlands within the intertidal zone outside of the seawalls. The principle idea is protecting the site and helping the marsh establishment by engineering measures, and thereafter, relieving the protections to encourage the self-organization of the restored ecosystem. The results of this implementation showed the marsh reached an average vegetation cover of 70% in the first year.

View Article and Find Full Text PDF

During the bloom seasons, the dissolved inorganic nitrogen declines, which results in the occurrence of nitrogen limitation. It is unclear where the nitrogen goes. Our enclosure experiments and batch tests suggested that Microcystis blooms could significantly reduce the nitrogen in water bodies and the key mechanisms for the nitrogen reduction in different layers were different.

View Article and Find Full Text PDF

Nitrogen limitation has been proven to inhibit Microcystis proliferation, and the significant decline in Microcystis blooms in late summer or autumn has been considered to be related to the nitrogen depletion in water. Sinking loss is another factor that influences the dynamics of cyanobacteria in lakes. However, to date, it is still unclear how the sinking property of Microcystis responds to nitrogen availability.

View Article and Find Full Text PDF

Recent studies indicated that the algal decomposition produces particulate and dissolved organic carbon (DOC), and can enhance denitrification in eutrophic lakes. However, the effects of the living cyanobacteria on nitrogen cycling in eutrophic lakes were still an unknown question. This study explores a new underlying mechanism of nitrate removal which is driven by living Microcystis.

View Article and Find Full Text PDF

Harmful cyanobacterial blooms (CyanoHABs) represent a serious threat to aquatic ecosystems. A beneficial use for these harmful microorganisms would be a promising resolution of this urgent issue. This study applied a simple method, nitrogen limitation, to cultivate cyanobacteria aimed at producing cyanobacterial carbon for denitrification.

View Article and Find Full Text PDF

The aim of this study was to investigate the feasibility of using harmful cyanobacterium Microcystis to help remove nitrate from eutrophic water. The results showed that after treatment by pressurization at 0.4MPa, Microcystis quickly sank to the bottom.

View Article and Find Full Text PDF

In-situ light-availability control is commonly used to suppress Microcystis blooms in nutrient-rich water resources. It has been suggested that the reduction of column cyanobacterial biomass could mostly be attributed to the inhibition of photosynthesis. However, sinking loss may be another factor influencing the column cyanobacterial biomass.

View Article and Find Full Text PDF

Organic Carbon added to low ratio of carbon to nitrogen (C/N ratio) wastewater to enhance heterotrophic denitrification performance might lead to higher operating costs and secondary pollution. In this study, sodium thiosulfate (Na2S2O3) was applied as an electron donor for a gravel filter (one kind of constructed wetland) to investigate effects of hydraulic retention time (HRT) and water temperature on the nitrate removal efficiency. The results show that with an HRT of 12 h, the average total nitrogen (TN) removal efficiencies were 91% at 15-20 °C and 18% at 3-6 °C, respectively.

View Article and Find Full Text PDF

Wetlands and ponds are frequently used to remove nitrate from effluents or runoffs. However, the efficiency of this approach is limited. Based on the assumption that introducing vertical mixing to water column plus carbon addition would benefit the diffusion across the sediment-water interface, we conducted simulation experiments to identify a method for enhancing nitrate removal.

View Article and Find Full Text PDF

Nitrogen removal in micro-polluted surface water by the combined process of a bio-filter and an ecological gravel bed was studied. Sodium acetate was added into micro-polluted surface water as carbon source and the nitrogen removal under different C/N ratio, hydraulic load and temperature were investigated. The results showed that the variations in C/N ratio, hydraulic load and temperature have significant influence on nitrogen removal in bio-filter.

View Article and Find Full Text PDF

Zeolite synthesized from coal fly ash (ZFA) was modified with hexadecyltrimethylammonium (HDTMA) and was examined for the adsorption of bisphenol A (BPA) from water. Two ZFAs were prepared in our laboratory and were characterized to obtain chemical and mineralogical composition, surface area, and total and external cation-exchange capacity among other parameters. HDTMA was confirmed to form bilayer micelles on external surfaces of zeolites.

View Article and Find Full Text PDF

Xonotlite was synthesized and tested for phosphate removal and recovery from synthetic solution in a batch mode. The effects of pH, initial calcium concentration, bicarbonate concentration on phosphate removal through crystallization were examined. The morphology and X-ray diffraction (XRD) pattern of xonotlite before and after crystallization confirmed the formation of crystalline hydroxyapatite.

View Article and Find Full Text PDF

The occurrence of harmful algal bloom in water source poses a serious water safety problem to local water supply systems. In order to ensure the raw water quality, the feasibility of reducing harmful algae by light-shading plus aeration was investigated. The batch test showed that algal biomass reduced rapidly under light-shading condition, and the reduction efficiency was further increased when light-shading was accompanied by aeration.

View Article and Find Full Text PDF

Zeolitic materials were synthesized from thermally treated sediment by alkali treatment using different NaOH/sediment ratios. Characterization of the materials was done by XRD, FTIR, cation exchange capacity and specific surface area. Use of high NaOH/sediment ratio favored the formation of zeolite.

View Article and Find Full Text PDF

Phosphate sorption capacities of 15 Chinese fly ashes were determined and related to their composition. The data of P sorption were best fitted to Langmuir equation, and the calculated sorption maxima of phosphate (Qm) ranged from 5.51 to 42.

View Article and Find Full Text PDF