Publications by authors named "Xuechen Zheng"

A relativistic core-valence-separated equation-of-motion coupled cluster (CVS-EOM-CC) study of chlorine L-edge X-ray absorption near-edge structure (XANES) spectra using CHCl and CHICl as representative molecules is reported. The nearly identical intensity for the main features in the L- and L-edge XANES spectra is attributed to multiplet effects and the overlap between core-valence and core Rydberg transitions. The multiplet effects originating from the interaction between the core hole and the C-Cl σ* orbitals account for around half of the deviation of the L and L intensity ratio from the 2:1 ratio of the numbers of 2p and 2p electrons.

View Article and Find Full Text PDF

A first implementation of analytic gradients for spinor-based relativistic equation-of-motion coupled-cluster singles and doubles method using an exact two-component Hamiltonian augmented with atomic mean-field spin-orbit integrals is reported. To demonstrate its applicability, we present calculations of equilibrium structures and harmonic vibrational frequencies for the electronic ground and excited states of the radium mono-amide molecule (RaNH2) and the radium mono-methoxide molecule (RaOCH3). Spin-orbit coupling is shown to quench Jahn-Teller effects in the first excited state of RaOCH3, resulting in a C3v equilibrium structure.

View Article and Find Full Text PDF

Characterization of the inner-shell decay processes in molecules containing heavy elements is key to understanding x-ray damage of molecules and materials and for medical applications with Auger-electron-emitting radionuclides. The 1s hole states of heavy atoms can be produced by absorption of tunable x rays and the resulting vacancy decays characterized by recording emitted photons, electrons, and ions. The 1s hole states in heavy elements have large x-ray fluorescence yields that transfer the hole to intermediate electron shells that then decay by sequential Auger-electron transitions that increase the ion's charge state until the final state is reached.

View Article and Find Full Text PDF

A benchmark computational study of K-edge core-ionization energies of third-row elements using relativistic delta-coupled-cluster (ΔCC) methods and a revised core-valence separation (CVS) scheme is reported. High-level relativistic (HLR) corrections beyond the spin-free exact two-component theory in its one-electron variant (SFX2C-1e), including the contributions from two-electron picture-change effects, spin-orbit coupling, the Breit term, and quantum electrodynamics effects, have been taken into account and demonstrated to play an important role. Relativistic ΔCC calculations are shown to provide accurate results for core-ionization energies of third-row elements.

View Article and Find Full Text PDF

Development of analytic gradients for relativistic coupled-cluster singles and doubles augmented with a non-iterative triples [CCSD(T)] method using an all-electron exact two-component Hamiltonian with atomic mean-field spin-orbit integrals (X2CAMF) is reported. This enables efficient CC geometry optimizations with spin-orbit coupling included in orbitals. The applicability of the implementation is demonstrated using benchmark X2CAMF-CCSD(T) calculations of equilibrium structures and harmonic vibrational frequencies for methyl halides, CHX (X = Br, I, and At), as well as calculations of rotational constants and infrared spectrum for RaSH, a radioactive molecular ion of interest to spectroscopic study.

View Article and Find Full Text PDF

A formulation of analytic energy first derivatives for the coupled-cluster singles and doubles augmented with noniterative triples [CCSD(T)] method with spin-orbit coupling included at the orbital level and an implementation for evaluation of first-order properties are reported. The standard density-matrix formulation for analytic CC gradient theory adapted to complex algebra has been used. The orbital-relaxation contributions from frozen core, occupied, virtual, and frozen virtual orbitals to analytic spin-orbit CCSD(T) gradients are fully taken into account and treated efficiently, which is of importance to calculations of heavy elements.

View Article and Find Full Text PDF

Since fall is happening with increasing frequency, it has been a major public health problem in an aging society. There are considerable demands to distinguish fall down events of seniors with the characteristics of accurate detection and real-time alarm. However, some daily activities are erroneously signaled as falls and there are too many false alarms in actual application.

View Article and Find Full Text PDF

Benchmark scalar-relativistic delta-coupled-cluster calculations of hetero-site double core ionization energies of small molecules containing second-row elements are reported. The present study has focused on the high-spin triplet components of two-site double core-ionized states, which are single reference in character and consistent with the use of standard coupled-cluster methods. Contributions to computed double core ionization energies from electron-correlation and basis-set effects as well as corrections to the core-valence separation approximation have been analyzed.

View Article and Find Full Text PDF

A thorough study of the performance of delta-coupled-cluster (ΔCC) methods for calculations of core-ionization energies for elements of the first long row of the periodic table is reported. Inspired by the core-valence separation (CVS) scheme in response theories, a simple CVS scheme of excluding the vacant core orbital from the CC treatment has been adopted to solve the convergence problem of the CC equations for core-ionized states. Dynamic correlation effects have been shown to make important contributions to the computed core-ionization energies, especially to chemical shifts of these quantities.

View Article and Find Full Text PDF