Proc Natl Acad Sci U S A
May 2024
Seamless integration of microstructures and circuits on three-dimensional (3D) complex surfaces is of significance and is catalyzing the emergence of many innovative 3D curvy electronic devices. However, patterning fine features on arbitrary 3D targets remains challenging. Here, we propose a facile charge-driven electrohydrodynamic 3D microprinting technique that allows micron- and even submicron-scale patterning of functional inks on a couple of 3D-shaped dielectrics via an atmospheric-pressure cold plasma jet.
View Article and Find Full Text PDFMatrix effect is one of the obstacles that hinders the rapid development of laser-induced breakdown spectroscopy (LIBS), and it is currently a hot, challenging, and focal point in research. To eliminate the matrix effect, this study proposed a plasma parameters correction method based on plasma image-spectrum fusion (PPC-PISF). This method corrects the total number density, plasma temperature, and electron number density variations caused by matrix effect using effective features in plasma images and spectra.
View Article and Find Full Text PDFSpectral fluctuation is one of the main obstacles affecting the further development of LIBS, and it is also the current research hotspot and difficulty. To meet the requirements of industrial monitoring, a novel method named plasma image-spectrum fusion laser induced breakdown spectroscopy (PISF-LIBS) was proposed to correct the spectral fluctuation and improve the quantitative accuracy. In this method, by systematically analyzing the spectral radiation model, six main factors affecting the spectral stability were obtained.
View Article and Find Full Text PDFA novel and effective method named time-resolved spectral-image laser-induced breakdown spectroscopy (TRSI-LIBS) was proposed to achieve precise qualitative and quantitative analysis of milk powder quality. To verify the feasibility of TRSI-LIBS, qualitative and quantitative analysis of milk powder quality was carried out. For qualitative analysis of foreign protein adulteration, the accuracy of models based on TRSI-LIBS was higher than those based on LIBS, with an accuracy improvement of about 5% to 10%.
View Article and Find Full Text PDFThe single sample calibration laser-induced breakdown spectroscopy (SSC-LIBS) is quite suitable for the fields where the standard sample is hard to obtain, including space exploration, geology, archaeology, and jewelry identification. But in practice, the self-absorption effect of plasma destroys the linear relationship of spectral intensity and element concentration based on the Lomakin-Scherbe formula which is the guarantee of the high accuracy of the SSC-LIBS. Thus, the self-absorption effect limits the quantitative accuracy of SSC-LIBS greatly.
View Article and Find Full Text PDFTwo-dimensional (2D) valleytronic systems can provide information storage and processing advantages that complement or surpass those of conventional charge and spin-based semiconductor technologies. For efficient use of the valley degree of freedom, the major challenge currently is to lift the valley degeneracy to achieve valley splitting for further valleytronic operations. In this work, we demonstrate that valley splitting and efficient hole-doping in monolayer WS can be achieved by the proximity coupling effect of 2D ferromagnetic MnO using density functional theory and Berry curvature calculations.
View Article and Find Full Text PDF