Publications by authors named "Xuechen Luan"

Heteronuclear correlation (HETCOR) spectroscopy is one of the key tools in the arsenal of the solid-state NMR spectroscopist to probe chemical and spatial proximities between two different nuclei and enhance spectral resolution. Dipolar heteronuclear multiple-quantum coherence (D-HMQC) is a powerful technique that can be potentially utilized to obtain 1H detected 2D HETCOR solid-state NMR spectra of any NMR active nucleus. A long-standing problem in 1H detected D-HMQC solid-state NMR experiments is the presence of t1-noise which reduces sensitivity and impedes spectral interpretation.

View Article and Find Full Text PDF

Multifunctional metal-organic frameworks (MOFs) that possess permanent porosity are promising catalysts in organic transformation. Herein, we report the construction of a hierarchical MOF functionalized with basic aliphatic amine groups and polyvinylpyrrolidone-capped platinum nanoparticles (Pt NPs). The postsynthetic covalent modification of organic ligands increases basic site density in the MOF and simultaneously introduces mesopores to create a hierarchically porous structure.

View Article and Find Full Text PDF

NiFe-layered double hydroxide (LDH) is thought of as a promising bifunctional water-splitting catalyst, owing to its excellent performances for alkaline oxygen evolution reactions (OERs). However, it shows extremely poor activity toward hydrogen evolution reactions (HERs) due to the weak hydrogen adsorption. We demonstrated that the integration of Rh species and NiFe-LDH can dramatically improve its HER kinetics without sacrificing the OER performance.

View Article and Find Full Text PDF

The design of efficient catalysts capable of delivering high currents at low overpotentials for hydrogen evolution reactions (HERs) is urgently needed to use catalysts in practical applications. Herein, we report platinum (Pt) alloyed with titanium (Ti) from the surface of TiCT MXenes to form PtTi intermetallic compound (IMC) nanoparticles (NPs) via in situ coreduction. In situ X-ray absorption spectroscopy (XAS) indicates that Pt undergoes a temperature-dependent transformation from single atoms to intermetallic compounds, and the catalyst reduced at 550 °C exhibits a superior HER performance in acidic media.

View Article and Find Full Text PDF

The facile pyrolysis of a bipyridyl metal-organic framework, MOF-253, produces N-doped porous carbons (Cz-MOF-253), which exhibit excellent catalytic activity in the Knoevenagel condensation reaction and outperform other nitrogen-containing MOF-derived carbons. More importantly, by virtue of their high Lewis basicity and porous nature, Cz-MOF-253-supported Pd nanoparticles (Pd/Cz-MOF-253-800) show excellent performance in a one-pot sequential Knoevenagel condensation-hydrogenation reaction.

View Article and Find Full Text PDF