Publications by authors named "Xuebin Yue"

Various segmentation networks based on Swin Transformer have shown promise in medical segmentation tasks. Nonetheless, challenges such as lower accuracy and slower training convergence have persisted. To tackle these issues, we introduce a novel approach that combines the Swin Transformer and Deformable Transformer to enhance overall model performance.

View Article and Find Full Text PDF

Lower limb exoskeleton robots have shown significant research value due to their capabilities of providing assistance to wearers and improving physical motion functions. As a type of robotic technology, wearable robots are directly in contact with the wearer's limbs during operation, necessitating a high level of human-robot collaboration to ensure safety and efficacy. Furthermore, gait prediction for the wearer, which helps to compensate for sensor delays and provide references for controller design, is crucial for improving the the human-robot collaboration capability.

View Article and Find Full Text PDF

The pooling function is vital for deep neural networks (DNNs). The operation is to generalize the representation of feature maps and progressively cut down the spatial size of feature maps to optimize the computing consumption of the network. Furthermore, the function is also the basis for the computer vision attention mechanism.

View Article and Find Full Text PDF

To accelerate the practical applications of artificial intelligence, this paper proposes a high efficient layer-wise refined pruning method for deep neural networks at the software level and accelerates the inference process at the hardware level on a field-programmable gate array (FPGA). The refined pruning operation is based on the channel-wise importance indexes of each layer and the layer-wise input sparsity of convolutional layers. The method utilizes the characteristics of the native networks without introducing any extra workloads to the training phase.

View Article and Find Full Text PDF

Since the prevalence of COVID-19, the virus has spread all over the world. A large number of people have been infected and died, and countries all over the world have experienced the most severe crisis. Vaccination can effectively resist the virus.

View Article and Find Full Text PDF