Publications by authors named "Xuebin Ke"

Complex emulsions are used to fabricate new morphologies of multiple Janus droplets, evolving from non-engulfing to complete engulfing core/shell configuration. The produced droplets contain an aqueous phase of dextran (DEX) solution and an oil phase, which is mixed with ethoxylated trimethylolpropane triacrylate (ETPTA) and poly(ethylene glycol) diacrylate (PEGDA). The PEGDA in the oil phase is transferred into the aqueous phase to form complex morphologies due to the phase separation of PEGDA and DEX.

View Article and Find Full Text PDF

To ensure a sustainable future, it is imperative to efficiently utilize abundant biomass to produce such as platform chemicals, transport fuels, and other raw materials; hydrochar is one of the promising candidates derived by hydrothermal carbonization of biomass in pressurized hot water. The synthesis of "hydrochar-wrapped TiAlC-derived nanofibers" was successfully achieved by a facile one-pot hydrothermal reaction using glucose as the hydrochar precursor. Meanwhile, cellulose and pinewood sawdust as raw materials were also investigated.

View Article and Find Full Text PDF

A self-assembly technology allows metal-organic framework materials to constitute a honeycomb internal structure while being shaped into millimeter-scale spheres. The ZIF-8 load is up to 83 wt% through solidification of chitosan (CS). This approach can be expanded to other morphologies (fibers) or crystals and is transformative for industrial manufacturing of nanomaterials.

View Article and Find Full Text PDF

Metal-enhanced fluorescence (MEF) as a newly recognized technology has been attracting considerable attention and is widely used in fluorescence-based technology. In this paper, we reported a novel distance-dependent MEF and metal-enhanced singlet oxygen generation phenomenon based on silica-coated gold nanorods (AuNRs@SiO2) core-shell structure with tetra-substituted carboxyl aluminum phthalocyanine (AlC4Pc) that serve as both fluorophore and photosensitizer. When the AlC4Pc was linked on the surface of AuNRs@SiO2, the fluorescence intensity and singlet oxygen productivity varied with the thickness difference of silica shell from 2.

View Article and Find Full Text PDF

A novel core-shell structure based on upconversion fluorescent nanoparticles (UCNPs) and dopamine-melanin has been developed for evaluation of the antioxidant capacity of biological fluids. In this approach, dopamine-melanin nanoshells facilely formed on the surface of UCNPs act as ultraefficient quenchers for upconversion fluorescence, contributing to a photoinduced electron-transfer mechanism. This spontaneous oxidative polymerization of the dopamine-induced quenching effect could be effectively prevented by the presence of various antioxidants (typically biothiols, ascorbic acid (Vitamin C), and Trolox).

View Article and Find Full Text PDF

Self-assembly of viral coating proteins encapsulating functional nanoparticles provides a new class of biomaterials with robust chemical and physical properties for potential applications in functional imaging, and therapeutic or diagnostic agent delivery. Herein, a straightforward method is demonstrated for efficient encapsidation of magnetic nanoparticles into the engineered virus-like particle (VLP) through the affinity of histidine tags for the nickel- nitrilotriacetic acid (NTA) chelate. Monodispersed, uniformly sized, magnetic core-containing VLPs are obtained at high efficiency (>85%) and used as the cellular T2 contrast agents for MR imaging applications thanks to their biocompatibility, higher cellular uptake, as well as higher r2 values.

View Article and Find Full Text PDF

Enhanced catalytic performance of zeolites via the plasmonic effect of gold nanoparticles has been discovered to be closely correlated with the molecular polarity of reactants. The intensified polarised electrostatic field of Na(+) in NaY plays a critical role in stretching the C=O bond of aldehydes to improve the reaction rate.

View Article and Find Full Text PDF

Light absorption efficiency of heterogeneous catalysts has restricted their photocatalytic capability for commercially important organic synthesis. Here, we report a way of harvesting visible light efficiently to boost zeolite catalysis by means of plasmonic gold nanoparticles (Au-NPs) supported on zeolites. Zeolites possess strong Brønsted acids and polarized electric fields created by extra-framework cations.

View Article and Find Full Text PDF

An innovative structure-nanozeolites (as shell) grown with preferred orientation on ceramic nanofibers (as core)-was proposed. The Y-zeolite nanocrystals on TiO2 nanofibers exhibited superior ability to catalyze acetalization and carboxylation reactions, achieving high conversions to desired products with a selectivity of 100% under moderate conditions.

View Article and Find Full Text PDF

We report that ultra-small, monodisperse, water-dispersible magnetite (Fe(3)O(4)) nanoparticles can be synthesized by a facile one-pot approach using trisodium citrate as crystal grain growth inhibitor and stabilizer in polyol solution. The resultant Fe(3)O(4) nanoparticles exhibit an excellent long-term colloidal stability in various buffer solutions without any modification. They are also superparamagnetic at room temperature and their magnetic property relies heavily on their size.

View Article and Find Full Text PDF

A near-infrared (NIR)-responsive Aurod@pNIPAAm-PEGMA nanogel was synthesized in two steps, growing a PEGMA monolayer on the surface of gold nanorods (AuNRs), followed by in situ polymerization and cross-linking of N-iso-propylacrylamide (NIPAAm) and poly-(ethylene glycol)-methacrylate (PEGMA). The AuNRs and Aurod@pNIPAAm-PEGMA nanogel were characterized by UV-vis spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy, respectively. The lower critical solution temperature of the Aurod@pNIPAAm-PEGMA nanogel could be tuned by changing the molar ratio of NIPAAm/PEGMA.

View Article and Find Full Text PDF

With new photocatalysts of gold nanoparticles supported on zeolite supports (Au/zeolite), oxidation of benzyl alcohol and its derivatives into the corresponding aldehydes can proceed well with a high selectivity (99 %) under visible-light irradiation at ambient temperature. Au/zeolite photocatalysts were characterised by UV/Vis, X-ray photoelectron spectroscopy (XPS), TEM, XRD, energy-dispersive spectroscopy (EDS), Brauner-Emmet-Teller (BET) analyses, IR and Raman techniques. The surface plasmon resonance (SPR) effect of gold nanoparticles, the adsorption capability of zeolite supports and the molecular polarities of aromatic alcohols were demonstrated to have an essential correlation with the photocatalytic performances.

View Article and Find Full Text PDF

Gold nanoparticles supported on CeO(2) were found to be efficient photocatalysts for three selective reductions of organic compounds at ambient temperatures, under irradiation of visible light; their reduction ability can be tuned by manipulating the irradiation wavelength.

View Article and Find Full Text PDF

Poly(lactide-co-glycolide) (PLGA) microspheres have been used for regenerative medicine due to their ability for drug delivery and generally good biocompatibility, but they lack adequate bioactivity for bone repair application. CaSiO₃ (CS) has been proposed as a new class of material suitable for bone tissue repair due to its excellent bioactivity. In this study, we set out to incorporate CS into PLGA microspheres to investigate how the phase structure (amorphous and crystal) of CS influences the in vitro and in vivo bioactivity of the composite microspheres, with a view to the application for bone regeneration.

View Article and Find Full Text PDF

Numerous materials are polycrystalline or consist with crystals of different phases. However, materials consisting of crystals on the nanometer scale (nanocrystals) are not simply aggregates of randomly oriented crystals as is generally regarded. We found, that in four different materials that consist of nanocrystals of two different phases and were obtained by different approaches, the nanocrystals of different phases are combined coherently forming interfaces with a close crystallographic registry between adjacent crystals (coherent interfaces).

View Article and Find Full Text PDF

Microsphere systems with the ideal properties for bone regeneration need to be bioactive, and at the same time possess the capacity for controlled protein/drug-delivery; however, the current crop of microsphere system fails to fulfill these properties. The aim of this study was to develop a novel protein-delivery system of bioactive mesoporous glass (MBG) microspheres by a biomimetic method through controlling the density of apatite on the surface of microspheres, for potential bone tissue regeneration. MBG microspheres were prepared by using the method of alginate cross-linking with Ca(2+) ions.

View Article and Find Full Text PDF

Sodium hexa-titanate (Na(2)Ti(6)O(13)) nanofibers, which have microporous tunnels, were prepared by heating sodium tri-titanate nanofibers with a layered structure at 573 K. The void section of the tunnels consist of eight linked TiO(6) octahedra, having a quasi-rectangular shape and the sodium ions located in these tunnel micropores are exchangeable. The exchange of these sodium ions with divalent cations, such as Sr(2+) and Ba(2+) ions, induces moderate structural deformation of the tunnels due to the stronger electrostatic interactions between di-valent ions Sr(2+) and Ba(2+) and the solid substrate.

View Article and Find Full Text PDF

Gold nanoparticles strongly absorb both visible light and ultraviolet light to drive an oxidation reaction for a synthetic dye, as well as phenol degradation and selective oxidation of benzyl alcohol under UV light.

View Article and Find Full Text PDF

A new efficient photocatalyst structure, a shell of anatase nanocrystals on the fibril core of a single TiO(2)(B) crystal, was obtained via two consecutive partial phase transition processes. In the first stage of the process, titanate nanofibers reacted with dilute acid solution under moderate hydrothermal conditions, yielding the anatase nanocrystals on the fiber. In the subsequent heating process, the fibril core of titanate was converted into a TiO(2)(B) single crystal while the anatase crystals in the shell remained unchanged.

View Article and Find Full Text PDF

A new design in efficient sorbents for the removal of trace pollutants from water was proposed: grafting the external surface of gamma-alumina (gamma-Al(2)O(3)) nanofibers with functional groups that have a strong affinity to the contaminants. This new grafting strategy greatly improves the accessibility of these sorption sites to adsorbates and thus efficiency of the fibrous sorbents. The product sorbents could capture the pollutants selectively even when the concentration of the contaminants is extremely low.

View Article and Find Full Text PDF