Publications by authors named "XueYan Cui"

Photosynthesis in nature begins with light harvesting. The special pigment-protein complex converts sunlight into electron excitation that is transmitted to the reaction center, which triggers charge separation. Evidence shows that quantum coherence between electron excited states is important in the excitation energy transfer process.

View Article and Find Full Text PDF
Article Synopsis
  • Toxic epidermal necrolysis (TEN) and Stevens-Johnson syndrome (SJS) are serious immune reactions, and this study focused on a case involving a woman taking phenobarbital for seizures who developed TEN.
  • The case was analyzed alongside existing literature, revealing that there were 19 reported cases of phenobarbital-induced SJS/TEN, with a notable portion resulting in fatalities, particularly among younger patients.
  • The findings emphasize the need for close monitoring of patients starting phenobarbital treatment, especially those with a history of asthma, since severe skin reactions can occur early in treatment even in patients who test negative for certain genetic markers.
View Article and Find Full Text PDF

The residue of chlortetracycline is potentially hazardous to human health; it is meaningful to exploit a portable, rapid, sensitive, and selective method for detection of chlortetracycline (CTC). In this study, a novel fluorescence bionic sensing probe (NH-MIL-53&N,P-CDs@MIP) was successfully prepared based on the nitrogen and phosphorus codoped carbon dots decorated iron-based metal-organic frameworks combining with molecular imprinted polymer for the detection of CTC. A fluorescence intensity-responsive "on-off" detection of CTC on account of the inner-filter effect (IFE) was achieved by NH-MIL-53&N,P-CDs@MIP.

View Article and Find Full Text PDF

Central nervous system infection (CNSI) treatment in hospital neurosurgery emphasizes the importance of optimizing antimicrobial therapy. Timely and appropriate empiric antibiotic treatment is critical for managing patients with bacterial meningitis. To evaluate the activities of clinical pharmacists in the anti-infective treatment of patients with CNSI in neurosurgery.

View Article and Find Full Text PDF

Halosulfuron-methyl (HM) is widely used for the removal of noxious weeds in corn, sugarcane, wheat, rice, and tomato fields. Despite its high efficiency and low toxicity, drift to nontarget crops and leaching of its metabolites to groundwater pose potential risks. Considering the instability of HM, the pyrazole sulfonamide of HM was used to generate a hapten and antigen to raise a high-quality monoclonal antibody (Mab, designated 1A91H11) against HM.

View Article and Find Full Text PDF

Endocrine-disrupting chemicals (EDCs) can cause serious harm to human health and the environment; therefore, it is important to rapidly and correctly identify EDCs. Different computational models have been proposed for the prediction of EDCs over the past few decades, but the reported models are not always easily available, and few studies have investigated the structural characteristics of EDCs. In the present study, we have developed a series of artificial intelligence models targeting EDC receptors: the androgen receptor (AR); estrogen receptor (ER); and pregnane X receptor (PXR).

View Article and Find Full Text PDF

Background: Butylphthalide (NBP) and edaravone (EDV) injection are common acute ischemic stroke medications in China, but there is a lack of large real-world safety studies on them. This study aimed to determine the incidence of adverse events, detect relevant safety signals, and assess the risk factors associated with these medications in real-world populations.

Methods: In this study, data of acute ischemic stroke patients were extracted from the electronic medical record database of six tertiary hospitals between January 2019 and August 2021.

View Article and Find Full Text PDF

Simple and rapid multiresidue trace detection of organophosphate pesticides (OPs) is extremely important for various reasons, including food safety, environmental monitoring, and national health. Here, a catalytic hairpin self-assembly (CHA)-based competitive fluorescent immunosensor was developed to detect OPs in agricultural products, involving enabled dual signal amplification followed by a CHA reaction. The developed method could detect 0.

View Article and Find Full Text PDF

In this study, a previously unreported 3-((4-(isopropylamino)-6-(methylthio)-1,3,5-triazin-2-yl) amino) butyric acid hapten was designed and synthesized. This maximized the exposure of the antigen-determinant isopropyl of prometryn to the immune system in animals to induce the production of anticipated highly specific anti-prometryn antibodies. The hapten has a molecular weight of 285.

View Article and Find Full Text PDF

Neurotoxicity can be resulted from many diverse clinical drugs, which has been a cause of concern to human populations across the world. The detection of drug-induced neurotoxicity (DINeurot) potential with biological experimental methods always required a lot of budget and time. In addition, few studies have addressed the structural characteristics of neurotoxic chemicals.

View Article and Find Full Text PDF

Background: SARS-CoV-2 adenoviral vector DNA vaccines have been linked to the rare but serious thrombotic postvaccine complication vaccine-induced immune thrombotic thrombocytopenia. This has raised concerns regarding the possibility of increased thrombotic risk after any SARS-CoV-2 vaccines.

Objectives: To investigate whether SARS-CoV-2 vaccines cause coagulation activation leading to a hypercoagulable state.

View Article and Find Full Text PDF

The incidence and complexity of drug-induced autoimmune diseases (DIAD) have been on the rise in recent years, which may lead to serious or fatal consequences. Besides, many environmental and industrial chemicals can also cause DIAD. However, there are few effective approaches to estimate the DIAD potential of drugs and other chemicals currently, and the structural characteristics and mechanism of action of DIAD compounds have not been clarified.

View Article and Find Full Text PDF

With the advantages of low cost, good safety, and easy assembly, aqueous zinc batteries (AZBs) are expected to be a promising energy storage device. However, AZBs are compromised by Zn dendrites and the hydrogen evolution reaction. Herein, we use polyethylene glycol-200 (PEG-200) and benzylidene acetone (BDA) as additives in the electrolyte of AZBs in order to inhibit Zn dendrite growth and side reactions, thus improving the cycle performance of the Zn electrode.

View Article and Find Full Text PDF

Balancing the risks and benefits of organophosphate pesticides (OPs) on human and environmental health relies partly on their accurate measurement. A highly sensitive fluorescence anti-quenching multi-residue bio-barcode immunoassay was developed to detect OPs (triazophos, parathion, and chlorpyrifos) in apples, turnips, cabbages, and rice. Gold nanoparticles were functionalized with monoclonal antibodies against the tested OPs.

View Article and Find Full Text PDF

It has become a top global regulatory priority to prevent and control pollution from the release of synthetic chemicals, which continues to affect the aquatic communities. In the past decades, computational tools were largely used to significantly reduce the budget and time cost of chemical acute aquatic toxicity assessment. But the structural basis of toxic compounds was rarely analyzed.

View Article and Find Full Text PDF

The rapid and accurate evaluation of chemical toxicity is of great significance for estimation of chemical safety. In the past decades, a great number of excellent computational models have been developed for chemical toxicity prediction. But most machine learning models tend to be "black box", which bring about poor interpretability.

View Article and Find Full Text PDF

This study provides the first design and synthetic protocol for preparing highly sensitive and specific atrazine (ATR) monoclonal antibodies (mAbs). In this work, a previously unreported hapten, 2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine, was designed and synthesized, which maximally exposed the characteristic amino group ATR to an animal immune system to induce the expected antibody. The molecular weight of the ATR hapten was 259.

View Article and Find Full Text PDF

Levosimendan and milrinone are 2 effective inotropic drugs used to maintain cardiac output in acute heart failure (AHF). Using data from patients with AHF with and without abnormal renal function, we performed this single-center, retrospective cohort study to compare the effectiveness and safety of milrinone and levosimendan for the initial management of AHF. Patients admitted for heart failure between December 2016 and September 2019 who received levosimendan or milrinone as initial inotrope therapy in the cardiology department were identified.

View Article and Find Full Text PDF

A rapid detection method is introduced for residual trace levels of triazophos in water and agricultural products using an immunoassay based on catalytic hairpin self-assembly (CHA). The gold nanoparticle (AuNPs) surface was modified with triazophos antibody and sulfhydryl bio-barcode, and an immune competition reaction system was established between triazophos and its ovalbumin-hapten (OVA-hapten). The bio-barcode served as a catalyst to continuously induce the CHA reaction to achieve the dual signal amplification.

View Article and Find Full Text PDF

The role of pigment-protein coupling in the dynamics of photosynthetic energy transport in chromophoric complexes has not been fully understood. The excitation energy transfer in the photosynthetic system is tremendously efficient. In particular, we investigate the excitation energy transport in the Fenna-Matthews-Olson (FMO) complex.

View Article and Find Full Text PDF

A bio-barcode immunoassay based on droplet digital polymerase chain reaction (ddPCR) was developed to simultaneously quantify triazophos, parathion, and chlorpyrifos in apple, cucumber, cabbage, and pear. Three gold nanoparticle (AuNP) probes and magnetic nanoparticle (MNP) probes were prepared, binding through their antibodies with the three pesticides in the same tube. Three groups of primers, probes, templates, and three antibodies were designed to ensure the specificity of the method.

View Article and Find Full Text PDF

Chemical-induced hematotoxicity is an important concern in the drug discovery, since it can often be fatal when it happens. It is quite useful for us to give special attention to chemicals which can cause hematotoxicity. In the present study, we focused on in silico prediction of chemical-induced hematotoxicity with machine learning (ML) and deep learning (DL) methods.

View Article and Find Full Text PDF

Organophosphate pesticides (OPs) are often used as insecticides and acaricides in agriculture, thus improving yields. OP residues may pose a serious threat, duetoinhibitionof the enzymeacetylcholinesterase(AChE). Therefore, a competitive bio-barcode immunoassay was designed for simultaneous quantification of organophosphate pesticide residues using AuNP signal amplification technology and Au@Pt catalysis.

View Article and Find Full Text PDF

Herein, a novel visual method for detecting triazophos based on competitive bio-barcode immunoassay was described. The competitive immunoassay was established by gold nanoparticles (AuNPs), magnetic microparticle (MMPs) and triazophos, combined with biochip hybridization system to detect the residual of triazophos in water and apple. Because AuNPs carried many bio-barcodes, which hybridized with labeled DNA on the biochip, catalyzed signal amplification using silver staining was detected by grayscale values as well as the naked eye.

View Article and Find Full Text PDF