Publications by authors named "XueTing Zhou"

Electron cryo-tomography (cryo-ET) is a powerful imaging tool that allows three-dimensional visualization of subcellular architecture. During morphological analysis, reliable tomogram segmentation can only be achieved through high-quality data. However, unlike single-particle analysis or subtomogram averaging, the field lacks a useful quantitative measurement of cellular tomogram quality.

View Article and Find Full Text PDF
Article Synopsis
  • - Plant-based diets are becoming more popular for their health benefits and lower environmental impact, leading to innovative food products like plant protein-based HIPE gels made solely from wheat gluten.
  • - The study developed stable HIPE gels by mixing wheat gluten in a vinegar-water solution, identifying that vinegar concentrations of 5% to 20% and wheat gluten concentrations of 1.0% to 7.5% are effective for gel formation.
  • - The resulting HIPE gels showed desirable properties such as shear thinning, viscoelasticity, and good thixotropic recovery, making them suitable for creating a textured, egg-free mayonnaise alternative.
View Article and Find Full Text PDF
Article Synopsis
  • The study evaluated the effectiveness of combining core decompression, bone grafting, and platelet-rich plasma injections in treating early-stage avascular necrosis of the femoral head among 74 patients.
  • Results showed that both the combined treatment methods significantly reduced the need for total hip arthroplasty (THA) compared to a control group receiving only symptomatic treatment, with THA rates at five years being 17.65% and 10.34% for treated groups versus 68.18% for controls.
  • While the PRP combination group showed a higher rate of patients not requiring THA and better scores on clinical assessments compared to the CD and BG group, these differences were not statistically significant.
View Article and Find Full Text PDF

Background: Anatomical reduction and stable fixation of complex tibial plateau fractures remain challenging in clinical practice. This study examines the efficacy of using 3D printing technology combined with customized plates for treating these fractures.

Methods: We retrospectively analyzed 22 patients treated with 3D printing and customized plates at the Orthopedic Department of the Central Hospital affiliated with Shenyang Medical College from September 2020 to January 2023.

View Article and Find Full Text PDF

This case report describes a woman in her 70s who presented with a 3-month history of hip pain and inability to walk. Upon admission, she was diagnosed with the extremely rare condition of complete femoral head disappearance. A comprehensive examination was conducted to determine the cause and devise an effective treatment strategy, taking the patient's medical history into account.

View Article and Find Full Text PDF

Background: This study aims to evaluate the therapeutic efficacy of combined treatment with pulsed electromagnetic fields (PEMFs) and platelet-rich plasma (PRP) injection in improving pain and functional mobility among patients with early-stage knee osteoarthritis (KOA). We hypothesize that this combined therapy can yield superior treatment outcomes.

Methods: Based on the different treatment regimens, we divided 48 patients diagnosed with Kellgren-Lawrence grades I-III KOA into 3 groups: the PRP group, the PEMFs group, and the PRP + PEMFs group.

View Article and Find Full Text PDF

Over the past few decades, the development of potent and safe immune-activating adjuvant technologies has become the heart of intensive research in the constant fight against highly mutative and immune evasive viruses such as influenza, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and human immunodeficiency virus (HIV). Herein, we developed a highly modular saponin-based nanoparticle platform incorporating Toll-like receptor agonists (TLRas) including TLR1/2a, TLR4a, and TLR7/8a adjuvants and their mixtures. These various TLRa-saponin nanoparticle adjuvant constructs induce unique acute cytokine and immune-signaling profiles, leading to specific T helper responses that could be of interest depending on the target disease for prevention.

View Article and Find Full Text PDF

SNARE proteins (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) play a key role in mediating a variety of plant biological processes. Currently, the function of the SNARE gene family in phytohormonal and abiotic stress treatments in grapevine is currently unknown, making it worthwhile to characterize and analyze the function and expression of this family in grapevine. In the present study, 52 genes were identified and predominantly distributed on 18 chromosomes.

View Article and Find Full Text PDF

Background: In recent years, 3D printing technology has made significant strides in the medical field. With the advancement of orthopedics, there is an increasing pursuit of high surgical quality and optimal functional recovery. 3D printing enables the creation of precise physical models of fractures, and customized personalized steel plates can better realign and more comprehensively and securely fix fractures.

View Article and Find Full Text PDF

Purposes: Fractures of the inferior patellar pole, unlike other patellar fractures, present challenges for traditional surgical fixation methods. This article introduces the clinical technique and outcomes of using Kirschner wire tension band combined with anchor screw cross-stitch fixation for comminuted inferior patellar pole fractures.

Methods: This retrospective case series study included 14 patients with comminuted inferior patellar pole fractures treated at our institution from September 1, 2020, to April 30, 2022.

View Article and Find Full Text PDF

Axially chiral molecular scaffolds are widely present in therapeutic agents, natural products, catalysts, and advanced materials. The construction of such molecules has garnered significant attention from academia and industry. The catalytic asymmetric synthesis of axially chiral biaryls, along with other non-biaryl axially chiral molecules, has been extensively explored in the past decade.

View Article and Find Full Text PDF

Chiral aldehydes containing a tertiary stereogenic center are versatile building blocks in organic chemistry. In particular, such structural motifs bearing an α,α-diaryl moiety are very challenging scaffolds and their efficient asymmetric synthesis is not reported. In this work, a phosphoric acid-catalyzed enantioselective synthesis of α,α-diaryl aldehydes from simple terminal alkynes is presented.

View Article and Find Full Text PDF
Article Synopsis
  • Cryogenic electron microscopy (cryoEM) is becoming popular for determining atomic structures of biological complexes, but some complexes behave poorly on cryoEM grids compared to conventional techniques.
  • The research introduces a theoretical formulation that explains why many particles aggregate or preferentially orient themselves, predicting that they migrate to the air-water interface (AWI) to lower surface energy.
  • By using surfactants to reduce surface tension, the study shows that this approach helps retain the biological complex's integrity and can improve cryoEM results, achieving near-atomic structure determination of the ClC-1 channel protein.
View Article and Find Full Text PDF

Current genotoxicity assessment methods are mainly employed to verify the genotoxic safety of drugs, but do not allow for rapid screening of specific genotoxic impurities (GTIs). In this study, a new approach for the recognition of GTIs has been proposed. It is to expose the complex samples to an in vitro nucleoside incubation model, and then draw complete DNA adduct profiles to infer the structures of potential genotoxic impurities (PGIs).

View Article and Find Full Text PDF

Coronavirus genomes sequester their start codons within stem-loop 5 (SL5), a structured, 5' genomic RNA element. In most alpha- and betacoronaviruses, the secondary structure of SL5 is predicted to contain a four-way junction of helical stems, some of which are capped with UUYYGU hexaloops. Here, using cryogenic electron microscopy (cryo-EM) and computational modeling with biochemically determined secondary structures, we present three-dimensional structures of SL5 from six coronaviruses.

View Article and Find Full Text PDF

Coronavirus genomes sequester their start codons within stem-loop 5 (SL5), a structured, 5' genomic RNA element. In most alpha- and betacoronaviruses, the secondary structure of SL5 is predicted to contain a four-way junction of helical stems, some of which are capped with UUYYGU hexaloops. Here, using cryogenic electron microscopy (cryo-EM) and computational modeling with biochemically-determined secondary structures, we present three-dimensional structures of SL5 from six coronaviruses.

View Article and Find Full Text PDF

As cryogenic electron microscopy (cryoEM) gains traction in the structural biology community as a method of choice for determining atomic structures of biological complexes, it has been increasingly recognized that many complexes that behave well under conventional negative-stain electron microscopy tend to have preferential orientation, aggregate or simply mysteriously "disappear" on cryoEM grids, but the reasons for such misbehavior are not well understood, limiting systematic approaches to solving the problem. Here, we have developed a theoretical formulation that explains these observations. Our formulation predicts that all particles migrate to the air-water interface (AWI) to lower the total potential surface energy - rationalizing the use of surfactant, which is a direct solution to reducing the surface tension of the aqueous solution.

View Article and Find Full Text PDF

Heterocyclic scaffolds are commonly found in numerous biologically active molecules, therapeutic agents, and agrochemicals. To probe chemical space around heterocycles, many powerful molecular editing strategies have been devised. Versatile C-H functionalization strategies allow for peripheral modifications of heterocyclic motifs, often being specific and taking place at multiple sites.

View Article and Find Full Text PDF

Chiral α,α-diaryl ketones are structural motifs commonly present in bioactive molecules, and they are also valuable building blocks in synthetic organic chemistry. However, catalytic asymmetric synthesis of α,α-diaryl ketones bearing a tertiary stereogenic center remains largely unsolved. Herein, we report a catalytic de novo enantioselective synthesis of α,α-diaryl ketones from simple alkynes via chiral phosphoric acid (CPA) catalysis.

View Article and Find Full Text PDF

Unlabelled: Over the past few decades, the development of potent and safe immune-activating adjuvant technologies has become the heart of intensive research in the constant fight against highly mutative and immune evasive viruses such as influenza, SARS-CoV-2, and HIV. Herein, we developed a highly modular saponin-based nanoparticle platform incorporating toll-like receptor agonists (TLRas) including TLR1/2a, TLR4a, TLR7/8a adjuvants and their mixtures. These various TLRa-SNP adjuvant constructs induce unique acute cytokine and immune-signaling profiles, leading to specific Th-responses that could be of interest depending on the target disease for prevention.

View Article and Find Full Text PDF

The C-N axially chiral N-arylpyrrole motifs are privileged scaffolds in numerous biologically active molecules and natural products, as well as in chiral ligands/catalysts. Asymmetric synthesis of N-arylpyrroles, however, is still challenging, and the simultaneous creation of contiguous C-N axial and central chirality remains unknown. Herein, a diastereo- and atroposelective synthesis of N-arylpyrroles enabled by light-induced phosphoric acid catalysis has been developed.

View Article and Find Full Text PDF

d-pantolactone is an intermediate in the synthesis of d-pantothenic acid, which is known as vitamin B. The commercial synthesis of d-pantolactone is carried out through the selective resolution of dl-pantolactone catalyzed by lactone hydrolase. In contrast to a kinetic resolution approach, the deracemization of dl-pantolactone is a simpler, greener, and more sustainable way to obtain d-pantolactone with high optical purity.

View Article and Find Full Text PDF

Glycolate oxidase is a peroxisomal flavoprotein catalyzing the oxidation of glycolate to glyoxylate and plays crucial metabolic roles in green algae, plants, and animals. It could serve as a biocatalyst for enzymatic production of glyoxylate, a fine chemical with a wide variety of applications in perfumery, flavor, and the pharmaceutical and agrochemical industries. However, the low catalytic activity of native glycolate oxidase and low levels of active enzyme in heterologous expression limit its practical use in industrial biocatalysis.

View Article and Find Full Text PDF

Most vaccines require several immunizations to induce robust immunity, and indeed, most SARS-CoV-2 vaccines require an initial two-shot regimen followed by several boosters to maintain efficacy. Such a complex series of immunizations unfortunately increases the cost and complexity of populations-scale vaccination and reduces overall compliance and vaccination rate. In a rapidly evolving pandemic affected by the spread of immune-escaping variants, there is an urgent need to develop vaccines capable of providing robust and durable immunity.

View Article and Find Full Text PDF

Prolonged maintenance of therapeutically-relevant levels of broadly neutralizing antibodies (bnAbs) is necessary to enable passive immunization against infectious disease. Unfortunately, protection only lasts for as long as these bnAbs remain present at a sufficiently high concentration in the body. Poor pharmacokinetics and burdensome administration are two challenges that need to be addressed in order to make pre- and post-exposure prophylaxis with bnAbs feasible and effective.

View Article and Find Full Text PDF