Publications by authors named "XueSong Zhu"

Elevated levels of oxidative stress, inflammation, and a dysregulated osteoclastogenesis balance frequently characterize the microenvironment of osteoporosis, which impedes the processes of healing and repair. Existing treatment approaches are limited in scope and rely primarily on factors and drugs. An injectable hydrogel designed for the ROS-responsive release of HS gas is presented in this study.

View Article and Find Full Text PDF
Article Synopsis
  • China has a diverse range of wild hazelnut resources, yet little research has been done on selecting and domesticating these indigenous strains.
  • The study involved eight wild hazelnut populations from seven origins in Heilongjiang Province, which were planted in a provenance trial to assess growth, flowering characteristics, and nut quality.
  • Findings showed notable geographical variations in flowering times and pollen characteristics, with the Nehe-originated variegated Corylus heterophylla identified as the best-performing strain based on comprehensive evaluations.
View Article and Find Full Text PDF
Article Synopsis
  • * This study utilized hyperspectral imaging (HSI) combined with machine learning to visually evaluate matcha quality, achieving high accuracy in classifying matcha grades (98.10%) and predicting quality with a strong model (R > 0.95).
  • * The approach detected spatial variations in key matcha components like catechins and caffeine, enabling a comprehensive and rapid quality assessment method for various types of matcha.
View Article and Find Full Text PDF

Objective: To investigate the use of anti-osteoporotic agents and refracture incidence in patients with osteoporotic vertebral compression fracture (OVCF) following percutaneous vertebral augmentation (PVA) and to evaluate the real-world treatment of patients using denosumab following PVA. This study aims to provide spine surgeons with empirical insights derived from real-world scenarios to enhance the management of bone health in OVCF patients.

Methods: This retrospective cohort study was based on data from the MarketScan and Optum databases from the USA.

View Article and Find Full Text PDF

Hypoxia-induced apoptosis of bone marrow mesenchymal stem cells (BMSCs) limits the efficacy of their transplantation for steroid-induced osteonecrosis of the femoral head (SONFH). As apoptosis and RNA methylation are closely related, exploring the role and mechanism of RNA methylation in hypoxic apoptosis of BMSCs is expected to identify new targets for transplantation of BMSCs for SONFH and enhance transplantation efficacy. We performed methylated RNA immunoprecipitation sequencing (MeRIP-seq) combined with RNA-seq on a hypoxia-induced apoptosis BMSC model and found that the RNA methyltransferase-like 3 (METTL3) is involved in hypoxia-induced BMSC apoptosis.

View Article and Find Full Text PDF

Electrospun nanofibers have been widely employed in bone tissue engineering for their ability to mimic the micro to nanometer scale network of the native bone extracellular matrix. However, the dense fibrous structure and limited mechanical support of these nanofibers pose challenges for the treatment of critical size bone defects. In this study, we propose a facile approach for creating a three-dimensional scaffold using interconnected electrospun nanofibers containing melatonin (Scaffold@MT).

View Article and Find Full Text PDF

Rose tea is a type of flower tea in China's reprocessed tea category, which is divided into seven grades, including super flower, primary flower, flower bud, flower heart, yellow flower, scattered flower, and waste flower. Grading rose tea into distinct quality levels is a practice that is essential to boosting their competitive advantage. Manual grading is inefficient.

View Article and Find Full Text PDF

The re-tear rate of rotator cuff tears (RCT) after surgical repair is high, especially in aged patients with chronic tears. Senescent tendon stem cells (s-TSCs) generally exist in aged and chronically torn rotator cuff tendons and are closely associated with impaired tendon-to-bone healing results. The present study found a positive feedback cross-talk between s-TSCs and macrophages.

View Article and Find Full Text PDF

The repair of critical-sized bone defects poses a significant challenge due to the absence of periosteum, which plays a crucial role in coordinating the processes of osteogenesis and vascularization during bone healing. Herein, we hypothesized that melatonin-encapsuled silk Fibronin electrospun nanofibers (SF@MT) could provide intrinsic induction of both osteogenesis and angiogenesis, thereby promoting vascularized bone regeneration. The sustained release of melatonin from the SF@MT nanofibers resulted in favorable biocompatibility and superior osteogenic induction of bone marrow mesenchymal stem cells (BMMSCs).

View Article and Find Full Text PDF

The rational design of multifunctional biomaterials with hierarchical porous structure and on-demand biological activity is of great consequence for bone tissue engineering (BTE) in the contemporary world. The advanced combination of trace element cerium ions (Ce) with bone repair materials makes the composite material capable of promoting angiogenesis and enhancing osteoblast activity. Herein, a living and phosphorylated injectable porous hydrogel microsphere (P-GelMA-Ce@BMSCs) is constructed by microfluidic technology and coordination reaction with metal ion ligands while loaded with exogenous BMSCs.

View Article and Find Full Text PDF

The scarcity of native periosteum poses a significant clinical barrier in the repair of critical-sized bone defects. The challenge of enhancing regenerative potential in bone healing is further compounded by oxidative stress at the fracture site. However, the introduction of artificial periosteum has demonstrated its ability to promote bone regeneration through the provision of appropriate mechanical support and controlled release of pro-osteogenic factors.

View Article and Find Full Text PDF

Reconstruction of osteochondral (OC) defects represents an immense challenge due to the need for synchronous regeneration of special stratified tissues. The revolutionary innovation of bioprinting provides a robust method for precise fabrication of tissue-engineered OCs with hierarchical structure; however, their spatial living cues for simultaneous fulfilment of osteogenesis and chondrogenesis to reconstruct the cartilage-bone interface of OC are underappreciated. Here, inspired by natural OC bilayer features, anisotropic bicellular living hydrogels (ABLHs) simultaneously embedding articular cartilage progenitor cells (ACPCs) and bone mesenchymal stem cells (BMSCs) in stratified layers were precisely fabricated via two-channel extrusion bioprinting.

View Article and Find Full Text PDF
Article Synopsis
  • Vertebral augmentation procedures like vertebroplasty (VP) and kyphoplasty (KP) are used to treat osteoporotic vertebral compression fractures (OVCFs), but their impact on mortality risk has been debated.
  • A large-scale meta-analysis of five studies involving over 2.4 million patients found that vertebral augmentation significantly reduced mortality risk by 18%, with an impressive 71% reduction in the short term.
  • Kyphoplasty was found to be more effective than vertebroplasty in lowering mortality risk, suggesting that these procedures can offer significant benefits for patients with OVCFs, especially shortly after fractures.
View Article and Find Full Text PDF

Osteoporotic bone defects, a severe complication of osteoporosis, are distinguished by a delayed bone healing process and poor repair quality. While bone marrow-derived mesenchymal stem cells (BMMSCs) are the primary origin of bone-forming osteoblasts, their mitochondrial function is impaired, leading to inadequate bone regeneration in osteoporotic patients. Melatonin is well-known for its antioxidant properties and regulation on bone metabolism.

View Article and Find Full Text PDF

The periosteum plays a vital role in the regeneration of critical-size bone defects and highly comminuted fractures, promoting the differentiation of osteoblasts, accelerating the reconstruction of the vascular network, and guiding bone tissue regeneration. However, the materials loaded with exogenous growth factors are limited by the release and activity of the elements. Therefore, the material structure must be carefully designed for the periosteal function.

View Article and Find Full Text PDF

Cartilage injury represents a frequent dilemma in clinical practice owing to its inherently limited self-renewal capacity. Biomimetic strategy-based engineered biomaterial, capable of coordinated regulation for cellular and microenvironmental crosstalk, provides an adequate avenue to boost cartilage regeneration. The level of oxidative stress in microenvironments is verified to be vital for tissue regeneration, yet it is often overlooked in engineered biomaterials for cartilage regeneration.

View Article and Find Full Text PDF

Intervertebral disc (IVD) herniation is a major cause of chronic low back pain and disability. The current nucleus pulposus (NP) discectomy effectively relieves pain symptoms, but the annulus fibrosus (AF) defects are left unrepaired. Tissue engineering approaches show promise in treating AF injury and IVD degeneration; however, the presence of an inflammatory milieu at the injury site hinders the mitochondrial energy metabolism of AF cells, resulting in a lack of AF regeneration.

View Article and Find Full Text PDF

Treating articular cartilage defects in patients remains a challenging task due to the absence of blood vessels within the cartilage tissue. The regenerative potential is further compromised by an imbalance between anabolism and catabolism, induced by elevated levels of reactive oxygen species. However, the advent of tissue engineering introduces a promising strategy for cartilage regeneration, offering viable solutions such as mechanical support and controlled release of chondrogenic molecules or cytokines.

View Article and Find Full Text PDF

Full-range therapeutic regimens for osteoarthritis (OA) should consider organs (joints)-tissues (cartilage)-cells (chondrocytes)-organelles cascade, of which the subcellular mitochondria dominate eukaryotic cells' fate, and thus causally influence OA progression. However, the dynamic regulation of mitochondrial rise and demise in impaired chondrocytes and the exact role of mitochondrial metronome sirtuins 3 (SIRT3) is not clarified. Herein, chondrocytes are treated with SIRT3 natural agonist dihydromyricetin (DMY) or chemical antagonist 3-TYP, respectively, to demonstrate the positive action of SIRT3 on preserving cartilage extracellular matrix (ECM).

View Article and Find Full Text PDF

Introduction: Over-activation of oxidative stress due to impaired antioxidant functions in nucleus pulpous (NP) has been identified as a key factor contributing to intervertebral disc degeneration (IVDD). While Kartogenin (KGN) has previously demonstrated antioxidant properties on articular cartilage against osteoarthritis, its effects on NP degeneration have yet to be fully understood.

Objectives: This study aimed to investigate the protective effects of KGN on nucleus pulpous cells (NPCs) against an inflammatory environment induced by interleukin (IL)-1β, as well as to explore the therapeutic potential of KGN-enhanced dynamic hydrogel in preventing IVDD.

View Article and Find Full Text PDF

The specific pathogenesis of steroid-induced osteonecrosis of the femoral head (SONFH) is still not fully understood, and there is currently no effective early cure. Understanding the role and mechanism of long noncoding RNAs (lncRNAs) in the pathogenesis of SONFH will help reveal the pathogenesis of SONFH and provide new targets for its early prevention and treatment. In this study, we first confirmed that glucocorticoid (GC)-induced apoptosis of bone microvascular endothelial cells (BMECs) is a pre-event in the pathogenesis and progression of SONFH.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how a lack of oxygen (hypoxia) leads to the death of transplanted bone marrow stem cells (BMSCs) in a condition called steroid-induced avascular necrosis of the femoral head (SANFH).
  • It identifies a long non-coding RNA, called LncAABR07053481, whose expression is decreased in BMSCs during hypoxia and shows that increasing its level can enhance the survival of these stem cells.
  • The research reveals that LncAABR07053481 works by interacting with a microRNA (miR-664-2-5p) to activate the Notch1 gene, ultimately improving the effectiveness of BMSC transplants in treating SANFH.
View Article and Find Full Text PDF

Over-accumulation of reactive oxygen species (ROS) causes mitochondrial dysfunction and impairs the osteogenic potential of bone marrow-derived mesenchymal stem cells (BMMSCs). Selenium (Se) protects BMMSCs from oxidative stress-induced damage; however, it is unknown whether Se supplementation can promote the repair of osteoporotic bone defects by rescuing the impaired osteogenic potential of osteoporotic BMMSCs (OP-BMMSCs). treatment with sodium selenite (NaSeO) successfully improved the osteogenic differentiation of OP-BMMSCs, as demonstrated by increased matrix mineralization and up-regulated osteogenic genes expression.

View Article and Find Full Text PDF

Flexible electronic and optoelectronic devices are highly desirable for various emerging applications, such as human-computer interfaces, wearable medical electronics, flexible display, etc. Layered two-dimensional (2D) material is one of the most promising types of materials to develop flexible devices due to its atomically thin thickness, which gives it excellent flexibility and mechanical endurance. However, the 2D material devices fabricated on flexible substrate inevitably suffer from mechanical deformation, which can severely affect device performances, resulting in function degradation and even failure.

View Article and Find Full Text PDF