Publications by authors named "XueKang Zhang"

Intestinal ischemia/reperfusion injury (I/R) is a common yet challenging-to-treat condition, presenting a significant clinical challenge. This study aims to investigate the protective mechanisms of Dexmedetomidine (Dex) against I/R injury, with a particular focus on its role in regulating autophagy activity in intestinal neurons and maintaining mitochondrial homeostasis. Experimental findings demonstrate that Dex can mitigate intestinal damage induced by I/R through the modulation of autophagy activity and mitochondrial function in intestinal neurons by suppressing the expression of Nupr1.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers created an Mg-Fe layered hydroxide (LDH) using a double titration method and incorporated it into a polyamide nanofiltration (NF) membrane through interfacial polymerization.
  • The modified NF membrane exhibited a wrinkled structure with a smoother surface compared to the standard membrane and demonstrated a high permeation flux of 61.7 L/m²/h and a rejection rate of 95.9% for sodium sulfate solution.
  • When used to separate a dye/NaCl mixture, the modified membrane rejected nearly all Coomassie Brilliant Blue dye (about 100%) while allowing only a small amount of NaCl (less than 17%) to pass, indicating its effectiveness in dye concentration and
View Article and Find Full Text PDF

Intestinal ischemia-reperfusion (II/R) injury is an urgent clinical disease with high incidence and mortality, and impaired intestinal barrier function caused by excessive apoptosis of intestinal cells is an important cause of its serious consequences. Tripartite motif-containing protein 65 (TRIM65) is an E3 ubiquitin ligase that is recently reported to suppress the inflammatory response and apoptosis. However, the biological function and regulation of TRIM65 in II/R injury are totally unknown.

View Article and Find Full Text PDF

Objective: Lidocaine has been reported to induce neurotoxicity, which is further enhanced by high glucose levels. This study is aimed to explore the underlying mechanisms of lidocaine neurotoxicity in spinal cord neurons of diabetes.

Methods: Take thirty specific pathogen-free (SPF) healthy Sprague-Dawley (SD) rats and thirty Goto-Kakizaki (GK) rats, aged 12 weeks, weighing 180-200 g.

View Article and Find Full Text PDF

Postoperative cognitive dysfunction (POCD) is common in aged patients after major surgery and is associated with increased risk of long-term morbidity and mortality. However, the underlying mechanism remains largely unknown and the clinical management of POCD is still controversial. Stellate ganglion block (SGB) is a clinical treatment for nerve injuries and circulatory issues.

View Article and Find Full Text PDF

This study was performed to uncover the effects of dexmedetomidine on oxidative stress injury induced by mitochondrial localization of telomerase reverse transcriptase (TERT) in enteric glial cells (EGCs) following intestinal ischaemia-reperfusion injury (IRI) in rat models. Following establishment of intestinal IRI models by superior mesenteric artery occlusion in Wistar rats, the expression and distribution patterns of TERT were detected. The IRI rats were subsequently treated with low or high doses of dexmedetomidine, followed by detection of ROS, MDA and GSH levels.

View Article and Find Full Text PDF

Background: Intestinal ischemia-reperfusion (I/R) causes severe injury to the intestine, leading to systemic inflammation and multiple organ failure. Autophagy is a stress-response mechanism that can protect against I/R injury by removing damaged organelles and toxic protein aggregates. Recent evidence has identified JAK-STAT signaling pathway as a new regulator of autophagy process, however, their regulatory relationship in intestinal I/R remains unknown.

View Article and Find Full Text PDF

Background: Intestinal ischemia/reperfusion (I/R) injury commonly occurs during perioperative periods, resulting in high morbidity and mortality on a global scale. Dexmedetomidine (Dex) is a selective α2-agonist that is frequently applied during perioperative periods for its analgesia effect; however, its ability to provide protection against intestinal I/R injury and underlying molecular mechanisms remain unclear.

Methods: To fill this gap, the protection of Dex against I/R injury was examined in a rat model of intestinal I/R injury and in an inflammation cell model, which was induced by tumor necrosis factor-alpha (TNF-α) plus interferon-gamma (IFN-γ) stimulation.

View Article and Find Full Text PDF

Acute lung injury (ALI) is an inflammatory disorder of the lung that causes high mortality and lacks any pharmacological intervention. Ubiquitination plays a critical role in the pathogenesis of ALI as it regulates the alveolocapillary barrier and the inflammatory response. Tripartite motif (TRIM) proteins are one of the subfamilies of the RING-type E3 ubiquitin ligases, which contains more than 80 distinct members in humans involved in a broad range of biological processes including antivirus innate immunity, development, and tumorigenesis.

View Article and Find Full Text PDF

Intestinal ischaemia-reperfusion (I/R) injury can result in acute lung injury due to ischaemia and hypoxia. Dexmedetomidine (Dex), a highly selective alpha2-noradrenergic receptor (α2AR) agonist used in anaesthesia, is reported to regulate inflammation in organs. This study aimed to investigate the role and mechanism of Dex in lung injury caused by intestinal I/R.

View Article and Find Full Text PDF

Intestinal ischemia-reperfusion (I/R) is a life-threatening condition associated with high morbidity and mortality. Dexmedetomidine (DEX), an agonist of α2-adrenoceptor with sedation and analgesia effect, has recently been identified with protective function against I/R injury in multiple organs. However, the mechanism underlying the beneficial effect of DEX on intestine after I/R injury remained poorly understood.

View Article and Find Full Text PDF

Dexmedetomidine (Dex) works as a crucial agent for the treatment of intestinal ischemia/reperfusion (I/R), but its mechanism remains unclear. Recent articles demonstrated the pivotal role of Janus kinase/signal transducer and activator of transcription (JAK2/STAT3) signalling in I/R. Therefore, it is reasonable to explore the associated mechanism of JAK2/STAT3 signalling in Dex treatment.

View Article and Find Full Text PDF

Although the non-small cell lung cancer (NSCLC) is one of the most malignant tumours worldwide, the mechanisms controlling NSCLC tumourigenesis remain unclear. Here, we find that the expression of miR-520b is up-regulated in NSCLC samples. Further studies have revealed that miR-520b promotes the proliferation and metastasis of NSCLC cells.

View Article and Find Full Text PDF

The study observed the efficacy and safety of dexmedetomidine, propofol and etomidate on brain functional areas in patients undergoing wake-up brain surgery under the guidance of entropy index. Sixty patients undergoing wake-up brain surgery on brain functional areas were enrolled, and randomly divided into three groups: dexmedetomidine group (group D), propofol group (group P) and etomidate group (group E), 20 in each. The vital signs, entropy indices of each time point, wake-up time, wake-up quality and adverse reaction in the wake-up period were observed and compared.

View Article and Find Full Text PDF

Resistance to radiotherapy is a major limitation for the successful treatment of colorectal cancer (CRC). Recently, accumulating evidence supports a critical role of epigenetic regulation in tumor cell survival upon irradiation. Lysine Demethylase 4B (KDM4B) is a histone demethylase involved in the oncogenesis of multiple human cancers but the underlying mechanisms have not been fully elucidated.

View Article and Find Full Text PDF

Recently, growing evidence has demonstrated Dexmedetomidine (Dex) a promising intervene preventing postoperative cognitive decline (POCD) following surgery, which is associated with neuroinflammation leading to neuronal apoptosis and deregulated neurogenesis. Previous studies suggested the anti-inflammation and anti-neuroapoptosis action of Dex. Therefore we hypothesize the promoting neurogenesis of Dex linked to stimulating BDNF and subsequent p-MPAK production in a rat model of POCD.

View Article and Find Full Text PDF

The aim of this study was to evaluate the efficacy of dexmedetomidine in combination with sufentanil or butorphanol for postoperative analgesia in patients undergoing laparoscopic resection of a gastrointestinal tumor.This quasi-experimental trial was conducted in Nanchang, China, from January 2014 to December 2015. Eighty patients (age 27-70 years, American Society of Anesthesiologists physical status I-II) undergoing laparoscopic resection of a gastrointestinal tumor were randomized into 4 groups and offered intravenous patient-controlled analgesia for pain control after surgery.

View Article and Find Full Text PDF

Allogenetic transfusion has long been considered to be a relatively safe and extremely effective blood transfusion treatment. However, acute hypervolemic hemodilution (AHH) combined with the remifentanil-induced controlled hypotension (CH) have rarely been examined. Herein, 40 intracranial aneurysm surgery patients were randomly divided into nitroglycerin group (A group, n=20) and remifentanil group (B group, n=20).

View Article and Find Full Text PDF

Objectives: Intestinal ischemia-reperfusion is a major problem, which may lead to multiorgan failure and death. The aim of this study was to evaluate the protective effects of dexmedetomidine on cell proliferation, antioxidant system, cell death, and structural integrity in intestinal injury induced by ischemia-reperfusion in rats.

Materials And Methods: Animals were randomized into three groups: group A, sham-operated or control; group B, intestinal ischemia/reperfusion (IR); and group C, intestinal IR pretreated with 50 μg of dexmedetomidine.

View Article and Find Full Text PDF