Publications by authors named "Xue-sen Yang"

Article Synopsis
  • Exertional heatstroke (EHS) can cause serious harm to the heart and other organs, highlighting the need for effective treatment strategies.
  • This study focused on the impact of L-carnitine (LC) in protecting against cardiac damage and dysfunction caused by EHS in rats, revealing that LC significantly improves heart health by reducing cell death and harmful changes in heart tissue.
  • The protective effects of LC are linked to its ability to inhibit the PERK pathway, which is involved in stress responses in cells, suggesting that LC supplementation may be a promising approach to mitigate heart injury in EHS cases.
View Article and Find Full Text PDF

Intestinal injury has been regarded as an important causative factor for systemic inflammation during heatstroke, and maintaining intestinal integrity has been a potential target for the prevention of HS. Huoxiang Zhengqi Dropping Pills (HZPD) is a modern preparation of Huoxiang Zhengqi and widely used to prevent HS. The present study aims to explore the protective effect of HZDP on intestinal injury during heatstroke and analyze its potential pharmacodynamic basis.

View Article and Find Full Text PDF

Background: Heat stroke is the outcome of excessive heat stress, which results in core temperatures exceeding 40°C accompanied by a series of complications. The brain is particularly vulnerable to damage from heat stress. In our previous studies, both activated microglia and increased neuronal autophagy were found in the cortices of mice with heat stroke.

View Article and Find Full Text PDF

Microglial CX3C chemokine receptor 1 (CX3CR1) has been implicated in numerous cellular mechanisms, including signalling pathways that regulate brain homoeostasis and adult hippocampal neurogenesis. Specific environmental conditions can impair hippocampal neurogenesis-related cognition, learning and memory. However, the role of CX3CR1 in the neurogenic alterations resulting from the cross-tolerance protection conferred by heat acclimation (HA) against the effects of electromagnetic field (EMF) exposure is less well understood.

View Article and Find Full Text PDF

The function of triggering receptor expressed on myeloid cells-2 (TREM2) has been described within microglia with a beneficial activated phenotype. However, the role of TREM2 underlying microglial phenotypic alterations in the cross-tolerance protection of heat acclimation (HA) against the inflammatory stimuli electromagnetic field (EMF) exposure is less well known. Here, we investigated the TREM2-related signaling mechanism induced by HA in EMF-stimulated N9 microglial cells (N9 cells).

View Article and Find Full Text PDF

The neuroinflammatory responses of microglial cells play an important role in the process of brain dysfunction caused by heat stroke. MicroRNAs are reportedly involved in a complex signaling network and have been identified as neuroinflammatory regulators. In this study, we determined the biological roles of microRNA-155 in the inflammatory responses in heat-stressed microglia and explored the underlying mechanisms.

View Article and Find Full Text PDF

Although microglial reaction to heat shock is considered to be protective, heat shock is still a potential hazard caused by high temperatures. Recent studies indicate that the inhibition of the 90-kDa heat shock protein (HSP90) increasing the protective heat shock response and suppressing inflammatory signalling pathways in several diseases. Nevertheless, the effects of heat shock on microglial pro-inflammatory responses are not completely identical.

View Article and Find Full Text PDF

Background: Prostaglandin E (PGE)-involved neuroinflammatory processes are prevalent in several neurological conditions and diseases. Amyloid burden is correlated with the activation of E-prostanoid (EP) 2 receptors by PGE in Alzheimer's disease. We previously demonstrated that electromagnetic field (EMF) exposure can induce pro-inflammatory responses and the depression of phagocytosis in microglial cells, but the signaling pathways involved in phagocytosis of fibrillar β-amyloid (fAβ) in microglial cells exposed to EMF are poorly understood.

View Article and Find Full Text PDF

Inflammatory activation of microglia and β amyloid (Aβ) deposition are considered to work both independently and synergistically to contribute to the increased risk of Alzheimer's disease (AD). Recent studies indicate that long-term use of phenolic compounds provides protection against AD, primarily due to their anti-inflammatory actions. We previously suggested that phenolic compound curcumin ameliorated phagocytosis possibly through its anti-inflammatory effects rather than direct regulation of phagocytic function in electromagnetic field-exposed N9 microglial cells (N9 cells).

View Article and Find Full Text PDF

Background: Insufficient clearance by microglial cells, prevalent in several neurological conditions and diseases, is intricately intertwined with MFG-E8 expression and inflammatory responses. Electromagnetic field (EMF) exposure can elicit the pro-inflammatory activation and may also trigger an alteration of the clearance function in microglial cells. Curcumin has important roles in the anti-inflammatory and phagocytic process.

View Article and Find Full Text PDF

Objective: To observe the neurologic damage in rat hippocampus after electromagnetic field (EMF) acute or chronic irradiation and research the protective effects of Chinese medicine diet (CMD) which comprised ferulic acid, ginsenoside, astragalus polysaccharide and rhodiola sachalinensis.

Methods: Eighty rats were divided into ten groups (n = 8): normal diet with shame irradiation group (NS), normal diet with chronic irradiation group (NCI), three groups of normal diet with acute irradiation after 3 h, 24 h, 72 h (NAI), Chinese medicine diet with shame irradiation group (CS), Chinese medicine diet with chronic irradiation group (CCI), three groups of Chinese medicine diet with acute irradiation after 3 h, 24 h, 72 h (CAI). The chronic EMF irradiation were performed by electromagnetic wave at 15 W/cm2 for 20 min everyday for 8 weeks continuously.

View Article and Find Full Text PDF

Objective: To investigate the injury effects of microwave on the visual performance and the apoptosis of retinal ganglion cells (RGCs) in rats and the relationship between the impaired visual performance and RGCs apoptosis induced by microwave.

Methods: The visual performance of rats was observed by Electroretinogram (ERG) and Flash visual evoked potentials (F-VEP). The apoptosis of RGCs in vivo and in vitro was detected by TUNEL assay and Hoechst staining.

View Article and Find Full Text PDF

The issue of possible neurobiological effects of the electromagnetic field (EMF) exposure is highly controversial. To determine whether electromagnetic field exposure could act as an environmental stimulus capable of producing stress responses, we employed the hippocampus, a sensitive target of electromagnetic radiation, to assess the changes in its stress-related gene and protein expression after EMF exposure. Adult male Sprague-Dawley rats with body restrained were exposed to a 2.

View Article and Find Full Text PDF

Objective: To explore the relationship between microglial proinflammatory and electromagnetic radiation and unveil the role of microglia in microwave radiation induced central nervous system injury.

Methods: N9 microglia cells cultured in vitro were exposed to microwave at 90 mW/cm2. Cell flow cytometry was used to observe the expression of CD11b at different time points after exposure; ELISA was used to detect the concentration of TNF-alpha in N9 cell culture supernatant; RT-PCR analysis confirmed iNOS mRNA expression in N9 microglia cells; and Nitrate Reductase Method was used to test NO amount in culture supernatant.

View Article and Find Full Text PDF

Objective: To study the change of heat shock protein (HSP)70 expression after exposure to occupational microwave in rats hippocampus, and explore the role of HSP70 in the mechanism of bio-effect of microwave irradiation.

Methods: The animal model was established by whole body exposures in 90, 5 W/cm(2) microwave irradiation field for 20 min in rats. Changes of the mRNA of hsp70 expressions in rat hippocampus at different time were studied by RT-PCR, and the protein change by Western blot.

View Article and Find Full Text PDF

Objective: To observe the effect of mitogen activated protein kinase (MAPK) signal transduction system on the apoptosis induced by electromagnetic exposure in PC12 cells.

Methods: After pretreated by SB203580 alone or together with U0126, PC12 cells were exposed to 65 mW/cm(2) electromagnetic wave for 20 min. The phosphorylations of ERK1/2, JNK and P38 MAPK were tested by Western-blot at 3 h and 24 h after electromagnetic exposure.

View Article and Find Full Text PDF

Aim: To explore the method of synthesizing the A beta(1-15) multiple antigen peptide (MAP) vaccine and to identify its quality and the immunological activity.

Methods: MAP A beta(1-15) was synthesized by indirect conjugation and analyzed by RP-HPLC,SDA-PAGE and amino acid analysis. Then, C57BL/6 mice were immunized with synthesized MAP A beta(1-15).

View Article and Find Full Text PDF

Objective: To explore the relationship between differential activation of mitogen-activated protein kinase (MAPK) signal transduction system and apoptosis in PC12 cells induced by electromagnetic irradiation.

Methods: Cultured PC12 cells were exposed to 65 mW/cm(2) electromagnetic wave for 20 min. The PC12 cells apoptosis was detected by flow cytometry 0, 3, 12, 24 h after electromagnetic irradiation.

View Article and Find Full Text PDF