Publications by authors named "Xue-na Guo"

Copper is an essential trace element for living organisms. Copper enriched by yeast of Saccharomyces cerevisiae is regarded as the biologically available organic copper supplement with great potentiality for application. However, the lower uptake ratio of copper ions makes the production of copper enriched by yeast uneconomically and environmentally unfriendly.

View Article and Find Full Text PDF

Bioethanol is an attractive alternative to fossil fuels. Saccharomyces cerevisiae is the most important ethanol producer. However, yeast cells are challenged by various environmental stresses during the industrial process of ethanol production.

View Article and Find Full Text PDF

The FPS1 gene coding for the Fps1p aquaglyceroporin protein of an industrial strain of Saccharomyces cerevisiae was disrupted by inserting CUP1 gene. Wild-type strain, CE25, could only grow on YPD medium containing less than 0.45% (v/v) acetic acid, while recombinant strain T12 with FPS1 disruption could grow on YPD medium with 0.

View Article and Find Full Text PDF

In this study, the problems of high caloric content, increased maturation time and off-flavors in commercial beer manufacture arising from residual sugar, diacetyl, and acetaldehyde levels were addressed. A recombinant industrial brewing yeast strain (TQ1) was generated from T1 [Lipomyces starkeyi dextranase gene (LSD1) introduced, alpha-acetohydroxyacid synthase gene (ILV2) disrupted] by introducing Saccharomyces cerevisiae glucoamylase (SGA1) and a strong promoter PGK1 while disrupting the genes coding alcohol dehydrogenase (ADH2). The highest glucoamylase activity for TQ1 was 93.

View Article and Find Full Text PDF

In the process of beer storage and transportation, off-flavor can be produced for oxidation of beer. Sulphite is important for stabilizing the beer flavor because of its antioxidant activity. However, the low level of sulphite synthesized by the brewing yeast is not enough to stabilize beer flavor.

View Article and Find Full Text PDF

Recombinant plasmid pICG was constructed by replacing the internal fragment of a-acetohydroxyacid synthase (AHAS) gene (ILV2) with a copy of gamma-glutamylcysteine synthetase gene (GSH1) and copper chelatin gene (CUP1) from the industrial brewing yeast strain YSF31. YSF31 was transformed with plasmid pICG linearized by Kpn I and Pst I. A recombinant strain with high-glutathione and low-diacetyl production was selected.

View Article and Find Full Text PDF

The yeast fusant ZFF-28, which is high in biomass production and rich in selenium, was constructed after mutagenesis and protoplasts fusion between yeast strains. The total selenium content of ZFF-28 is 1.8 and 1.

View Article and Find Full Text PDF