Publications by authors named "Xue-mei Song"

Article Synopsis
  • - Previous research indicates that males can perceive visual motion direction more quickly than females, prompting an investigation into whether the middle temporal visual complex (MT+) is responsible for these differences in perception duration.
  • - Using ultra-high field MRI, the study involved 95 participants to assess sex-related variations in brain structure and activity in the MT+ region, revealing that males have larger gray matter volume and enhanced spontaneous activity in the left MT+.
  • - The results highlight significant sex differences in brain structure and function, specifically in the MT+ area, which are associated with motion perception abilities, suggesting that these neural characteristics may contribute to the different temporal thresholds for motion discrimination between genders.
View Article and Find Full Text PDF

The prevailing opinion emphasizes fronto-parietal network (FPN) is key in mediating general fluid intelligence (gF). Meanwhile, recent studies show that human MT complex (hMT+), located at the occipito-temporal border and involved in 3D perception processing, also plays a key role in gF. However, the underlying mechanism is not clear, yet.

View Article and Find Full Text PDF

Schizophrenia (SZ) is a severe psychiatric disorder characterized by perceptual, emotional, and behavioral abnormalities, with cognitive impairment being a prominent feature of the disorder. Recent studies demonstrate irregularity in SZ with increased variability on the neural level. Is there also irregularity on the psychophysics level like in visual perception? Here, we introduce a methodology to analyze the irregularity in a trial-by-trial way to compare the SZ and healthy control (HC) subjects.

View Article and Find Full Text PDF

Objective: Previous studies have found that patients with Major Depressive Disorder (MDD) exhibit impaired visual motion perception capabilities, and multi-level abnormalities in the human middle temporal complex (MT+), a key brain area for processing visual motion information. However, the brain activity pattern of MDD patients during the perception of visual motion information is currently unclear. In order to study the effect of depression on the activity and functional connectivity (FC) of MT+ during the perception of visual motion information, we conducted a study combining task-state fMRI and psychophysical paradigm to compare MDD patients and healthy control (HC).

View Article and Find Full Text PDF

Major depressive disorder (MDD) is characterized by psychomotor retardation whose underlying neural source remains unclear. Psychomotor retardation may either be related to a motor source like the motor cortex or, alternatively, to a psychomotor source with neural changes outside motor regions, like input regions such as visual cortex. These two alternative hypotheses in main (n = 41) and replication (n = 18) MDD samples using 7 Tesla MRI are investigated.

View Article and Find Full Text PDF

G-quadruplexes (G4s) are non-canonical four-stranded structures and are emerging as novel genetic regulatory elements. However, a comprehensive genomic annotation of endogenous G4s (eG4s) and systematic characterization of their regulatory network are still lacking, posing major challenges for eG4 research. Here, we present EndoQuad (https://EndoQuad.

View Article and Find Full Text PDF

Medial prefrontal cortex (MPFC) and other regions like the occipital cortex (OC) exhibit abnormal neural activity in major depressive disorder (MDD). Their relationship to specific biochemical, psychophysical, and psychopathological changes remains unclear, though. For that purpose, we focus on a particular subregion in OC, namely middle temporal (MT) visual area that is known to mediate the perception of visual motion.

View Article and Find Full Text PDF

Center-surround antagonism, as a ubiquitous feature in visual processing, usually leads to inferior perception for a large stimulus compared to a small one. For example, it is more difficult to judge the motion direction of a large high-contrast pattern than that of a small one. However, this spatial suppression in the motion dimension was only reported for luminance motion, and was not found for chromatic motion.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is a complex state-dependent psychiatric illness for which biomarkers linking psychophysical, biochemical, and psychopathological changes remain yet elusive, though. Earlier studies demonstrate reduced GABA in lower-order occipital cortex in acute MDD leaving open its validity and significance for higher-order visual perception, though. The goal of our study is to fill that gap by combining psychophysical investigation of visual perception with measurement of GABA concentration in middle temporal visual area (hMT+) in acute depressed MDD.

View Article and Find Full Text PDF

In the mammalian visual system, early stages of visual form perception begin with orientation selective neurons in primary visual cortex (V1). In many species (including humans, monkeys, tree shrews, cats, and ferrets), these neurons are organized in pinwheel-like orientation columns. To study the functional organization within orientation pinwheels, it is important to target pinwheel subdomains precisely.

View Article and Find Full Text PDF

An important aspect of visual object recognition is the ability to perceive object shape. Two basic components of complex shapes are straight and curved contours. A large body of evidence suggests a modular hierarchy for shape representation progressing from simple and complex orientation in early areas V1 and V2, to increasingly complex stages of curvature representation in V4, TEO, and TE.

View Article and Find Full Text PDF

Traditional electrical stimulation of brain tissue typically affects relatively large volumes of tissue spanning multiple millimeters. This low spatial resolution stimulation results in nonspecific functional effects. In addition, a primary shortcoming of these designs was the failure to take advantage of inherent functional organization in the cerebral cortex.

View Article and Find Full Text PDF

In the mammalian visual system, early stages of visual form processing begin with orientation-selective neurons in primary visual cortex (V1). In many species (including humans, monkeys, tree shrews, cats, and ferrets), these neurons are organized in a beautifully arrayed pinwheel-like orientation columns, which shift in orientation preference across V1. However, to date, the relationship of orientation architecture to the encoding of multiple elemental aspects of visual contours is still unknown.

View Article and Find Full Text PDF

The synthesis of gallium nitride nanowires (GaN NWs) by plasma enhanced chemical vapor deposition (PECVD) are successfully demonstrated in this work. The simple and green synthesis route is to introduce gallium oxide (Ga2O3) and nitrogen (N2) for the growth of nanowires. The prepared GaN nanowires have a single crystalline wurtzite structure, which the length of some nanowires is up to 20 μm, with a maximum diameter about 140 nm.

View Article and Find Full Text PDF

Multiple cell classes have been found in the primary visual cortex, but the relationship between cell types and spatial summation has seldom been studied. Parvalbumin-expressing inhibitory interneurons can be distinguished from pyramidal neurons based on their briefer action potential durations. In this study, we classified V1 cells into fast-spiking units (FSUs) and regular-spiking units (RSUs) and then examined spatial summation at high and low contrast.

View Article and Find Full Text PDF

In this study, we investigated orientation selectivity in cat primary visual cortex (V1) and its relationship with various parameters. We found a strong correlation between circular variance (CV) and orthogonal-topreferred response ratio (O/P ratio), and a moderate correlation between tuning width and O/P ratio. Moreover, the suppression far from the peak that accounted for the lower CV in cat V1 cells also contributed to the narrowing of the tuning width of cells.

View Article and Find Full Text PDF

The receptive fields of the clear majority of neurons in the primary visual cortex (V1) of cats contain silent surround regions beyond the classical receptive field (CRF). When stimulated on their own, the silent surround regions do not generate action potentials (spikes); instead, they modulate (and usually partially suppress) spike responses to stimuli presented in the CRF. In the present study, we subdivided our sample of single V1 neurons recorded from anesthetized cats into two distinct categories: surround-suppressive (SS) cells and surround-non-suppressive (SN) cells.

View Article and Find Full Text PDF

The spatial summation of excitation and inhibition determines the final output of neurons in the cat V1. To characterize the spatial extent of the excitatory classical receptive field (CRF) and inhibitory non-classical receptive field (nCRF) areas, we examined the spatial summation properties of 169 neurons in cat V1 at high (20-90%) and low (5-15%) stimulus contrasts. Three categories were classified based on the difference in the contrast dependency of the surround suppression.

View Article and Find Full Text PDF

The orientation tuning properties of the non-classical receptive field (nCRF or "surround") relative to that of the classical receptive field (CRF or "center") were tested for 119 neurons in the cat primary visual cortex (V1). The stimuli were concentric sinusoidal gratings generated on a computer screen with the center grating presented at an optimal orientation to stimulate the CRF and the surround grating with variable orientations stimulating the nCRF. Based on the presence or absence of surround suppression, measured by the suppression index at the optimal orientation of the cells, we subdivided the neurons into two categories: surround-suppressive (SS) cells and surround-non-suppressive (SN) cells.

View Article and Find Full Text PDF

As an important regulator in eukaryote, miRNAs could be in the animal body fluids, including serum, blood plasma, saliva, urine and so on. More recently, it was reported that miRNAs were also in the breast milk of human or cow, which indicates that miRNAs could probably be transferred into the body of the next generation by lactation and play their key roles. This might be the prelude of studies on the regulation function of miRNAs in generations.

View Article and Find Full Text PDF

In area V1 of cat and monkey, there is a surround region beyond the classical receptive field (CRF) which alone is unresponsive but may modulate the cell's response. This field is referred to as the "nonclassical receptive field" (nCRF). It has been reported in monkey that the extent of CRF and/or nCRF of V1 neurons is not fixed but varies with stimulus contrast.

View Article and Find Full Text PDF

Tunable diode laser absorption spectroscopy (TDLAS) technique is a new method to detect trace gas qualitatively or quantificationally based on the scan characteristic of the diode laser to obtain the absorption spectra in the characteristic absorption region. TDLAS is a highly sensitive, highly selective and fast time response trace gas detection technique. In the present paper, a DFB laser at room temperature was used as the light source, wavelength modulation method was employed, and the second harmonic signal of one absorption line near 1.

View Article and Find Full Text PDF

The greenhouse effect exacerbated by the increase of Carbon-containing gases is the more important causes of the climate change, It is very meaningful to the large-scale flux of carbon dioxide detection for the estimate the contributions of the main greenhouse gases in the atmosphere of various errestrial eco-systems. Tunable diode laser absorption spectroscopy (TDLAS) is a highly sensitive, highly selective and fast time response trace gas detection technique. In the present paper, the authors used a DFB laser was used as the light source, and by employing wavelength modulation method, and measuring the second harmonic signal of one absorption line near 1.

View Article and Find Full Text PDF

In V1 of cats and monkeys, activity of neurons evoked by stimuli within the receptive field can be modulated by stimuli in the extra-receptive field (ERF). This modulating effect can be suppressive (S-ERF) or facilitatory (F-ERF) and plays different roles in visual information processing. Little is known about the cellular bases underlying the different types of ERF modulating effects.

View Article and Find Full Text PDF

Neuropeptide Y (NPY) is one of the most important orexigenic agents in central regulation of feeding behavior, body weight and energy homeostasis in domestic chickens. To examine differences in the hypothalamic NPY between layer-type and meat-type of chickens, which are two divergent kinds of the domestic chickens in feeding behavior and body weight, we detected mRNA levels of NPY in hypothalamic infundibular nucleus (IN), paraventricular nucleus (PVN) and lateral hypothalamic area (LHA) of these two types of chickens using one-step real time RT-PCR. The meat-type chicken had more food daily (about 1.

View Article and Find Full Text PDF