Publications by authors named "Xue-Zhi Zhao"

Developing effective inhibitors of the DNA repair enzyme tyrosyl-DNA phosphodiesterase 1 (TDP1) has been challenging because of the enzyme shallow catalytic pocket and non-specific substrate binding interactions. Recently, we discovered a quinolone-binding hot spot in TDP1's active site proximal to the evolutionary conserved Y204 and F259 residues that position DNA. Sulfur (VI) fluoride exchange (SuFEx) is a biocompatible click chemistry reaction that enables acylation of protein residues, including tyrosine.

View Article and Find Full Text PDF

HIV-1 integrase (IN) is an important molecular target for the development of anti-AIDS drugs. A recently FDA-approved second-generation integrase strand transfer inhibitor (INSTI) cabotegravir (CAB, 2021) is being marketed for use in long-duration antiviral formulations. However, missed doses during extended therapy can potentially result in persistent low levels of CAB that could select for resistant mutant forms of IN, leading to virological failure.

View Article and Find Full Text PDF

HIV-1 infection depends on the integration of viral DNA into host chromatin. Integration is mediated by the viral enzyme integrase and is blocked by integrase strand transfer inhibitors (INSTIs), first-line antiretroviral therapeutics widely used in the clinic. Resistance to even the best INSTIs is a problem, and the mechanisms of resistance are poorly understood.

View Article and Find Full Text PDF

Tyrosyl-DNA phosphodiesterase 1 (TDP1) is a member of the phospholipase D family that can downregulate the anticancer effects of the type I topoisomerase (TOP1) inhibitors by hydrolyzing the 3'-phosphodiester bond between DNA and the TOP1 residue Y723 in the critical stalled intermediate that is the foundation of TOP1 inhibitor mechanism of action. Thus, TDP1 antagonists are attractive as potential enhancers of TOP1 inhibitors. However, the open and extended nature of the TOP1-DNA substrate-binding region has made the development of TDP1 inhibitors extremely challenging.

View Article and Find Full Text PDF

Purple Chinese cabbage (PCC) has become a new breeding trend due to its attractive color and high nutritional quality since it contains abundant anthocyanidins. With the aim of rapid evaluation of PCC anthocyanidins contents and screening of breeding materials, a fast quantitative detection method for anthocyanidins in PCC was established using Near Infrared Spectroscopy (NIR). The PCC samples were scanned by NIR, and the spectral data combined with the chemometric results of anthocyanidins contents obtained by high-performance liquid chromatography were processed to establish the prediction models.

View Article and Find Full Text PDF

Tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs stalled type I topoisomerase (TOP1)-DNA complexes by hydrolyzing the phosphodiester bond between the TOP1 Y723 residue and the 3'-phosphate of its DNA substrate. Although TDP1 antagonists could potentially reduce the dose of TOP1 inhibitors needed to achieve effective anticancer effects, the development of validated TDP1 inhibitors has proven to be challenging. This may, in part, be due to the open and extended nature of the TOP1 substrate binding region.

View Article and Find Full Text PDF

Between 10 and 20 million people worldwide are infected with the human T-cell lymphotropic virus type 1 (HTLV-1). Despite causing life-threatening pathologies there is no therapeutic regimen for this deltaretrovirus. Here, we screened a library of integrase strand transfer inhibitor (INSTI) candidates built around several chemical scaffolds to determine their effectiveness in limiting HTLV-1 infection.

View Article and Find Full Text PDF

Tyrosyl-DNA phosphodiesterase 1 (TDP1) is a member of the phospholipase D family of enzymes, which catalyzes the removal of both 3'- and 5'-DNA phosphodiester adducts. Importantly, it is capable of reducing the anticancer effects of type I topoisomerase (TOP1) inhibitors by repairing the stalled covalent complexes of TOP1 with DNA. It achieves this by promoting the hydrolysis of the phosphodiester bond between the Y723 residue of human TOP1 and the 3'-phosphate of its DNA substrate.

View Article and Find Full Text PDF

Integrase strand transfer inhibitors (INSTIs) block the integration step of the retroviral lifecycle and are first-line drugs used for the treatment of HIV-1/AIDS. INSTIs have a polycyclic core with heteroatom triads, chelate the metal ions at the active site, and have a halobenzyl group that interacts with viral DNA attached to the core by a flexible linker. The most broadly effective INSTIs inhibit both wild-type (WT) integrase (IN) and a variety of well-known mutants.

View Article and Find Full Text PDF

Integrase strand transfer inhibitors (INSTIs) are currently recommended for the first line treatment of human immunodeficiency virus type one (HIV-1) infection. The first-generation INSTIs are effective but can select for resistant viruses. Recent advances have led to several potent second-generation INSTIs that are effective against both wild-type (WT) HIV-1 integrase and many of the first-generation INSTI-resistant mutants.

View Article and Find Full Text PDF

The currently recommended first-line therapy for HIV-1-infected patients is an integrase (IN) strand transfer inhibitor (INSTI), either dolutegravir (DTG) or bictegravir (BIC), in combination with two nucleoside reverse transcriptase inhibitors (NRTIs). Both DTG and BIC potently inhibit most INSTI-resistant IN mutants selected by the INSTIs raltegravir (RAL) and elvitegravir (EVG). BIC has not been reported to select for resistance in treatment-naive patients, and DTG has selected for a small number of resistant viruses in treatment-naive patients.

View Article and Find Full Text PDF

Protein-protein interactions (PPIs) represent an extremely attractive class of potential new targets for therapeutic intervention; however, the shallow extended character of many PPIs can render developing inhibitors against them as exceptionally difficult. Yet this problem can be made tractable by taking advantage of the fact that large interacting surfaces are often characterized by confined "hot spot" regions, where interactions contribute disproportionately to overall binding energies. Peptides afford valuable starting points for developing PPI inhibitors because of their high degrees of functional diversity and conformational adaptability.

View Article and Find Full Text PDF

The HIV intasome is a large nucleoprotein assembly that mediates the integration of a DNA copy of the viral genome into host chromatin. Intasomes are targeted by the latest generation of antiretroviral drugs, integrase strand-transfer inhibitors (INSTIs). Challenges associated with lentiviral intasome biochemistry have hindered high-resolution structural studies of how INSTIs bind to their native drug target.

View Article and Find Full Text PDF

Background: Peritoneal dialysis (PD) patients are at high risk of developing glucose metabolism disturbance (GMD). The incidence and prevalence of new-onset GMD, including diabetes mellitus (DM), impaired glucose tolerance (IGT) and impaired fast glucose (IFG), after initiation of PD, as well as their correlated influence factors, varies among studies in different areas and of different sample sizes. Also, the difference compared with hemodialysis (HD) remained unclear.

View Article and Find Full Text PDF

Tyrosyl DNA-phosphodiesterase I (TDP1) repairs type IB topoisomerase (TOP1) cleavage complexes generated by TOP1 inhibitors commonly used as anticancer agents. TDP1 also removes DNA 3' end blocking lesions generated by chain-terminating nucleosides and alkylating agents, and base oxidation both in the nuclear and mitochondrial genomes. Combination therapy with TDP1 inhibitors is proposed to synergize with topoisomerase targeting drugs to enhance selectivity against cancer cells exhibiting deficiencies in parallel DNA repair pathways.

View Article and Find Full Text PDF

Background: Barbarea vulgaris is a wild cruciferous plant and include two distinct types: the G- and P-types named after their glabrous and pubescent leaves, respectively. The types differ significantly in resistance to a range of insects and diseases as well as glucosinolates and other chemical defenses. A high-density linkage map was needed for further progress to be made in the molecular research of this plant.

View Article and Find Full Text PDF

Members of the polo-like kinase (Plk) family of serine/threonine protein kinases play crucial roles in cell cycle regulation and proliferation. Of the five Plks (Plk1-5), Plk1 is recognized as an anticancer drug target. Plk1 contains multiple structural components that are important for its proper biological function.

View Article and Find Full Text PDF

Chemical library screening approaches that focus exclusively on catalytic events may overlook unique effects of protein-protein interactions that can be exploited for development of specific inhibitors. Phosphotyrosyl (pTyr) residues embedded in peptide motifs comprise minimal recognition elements that determine the substrate specificity of protein tyrosine phosphatases (PTPases). We incorporated aminooxy-containing amino acid residues into a 7-residue epidermal growth factor receptor (EGFR) derived phosphotyrosine-containing peptide and subjected the peptides to solution-phase oxime diversification by reacting with aldehyde-bearing druglike functionalities.

View Article and Find Full Text PDF

HIV-1 integrase (IN) inhibitors represent a new class of highly effective anti-AIDS therapeutics. Current FDA-approved IN strand transfer inhibitors (INSTIs) share a common mechanism of action that involves chelation of catalytic divalent metal ions. However, the emergence of IN mutants having reduced sensitivity to these inhibitors underlies efforts to derive agents that antagonize IN function by alternate mechanisms.

View Article and Find Full Text PDF

Integrase strand transfer inhibitors (INSTIs) have emerged as clinically effective therapeutics that inhibit HIV-1 replication by blocking the strand transfer reaction catalyzed by HIV-1 integrase (IN). Of the three FDA-approved INSTIs, dolutegravir (DTG) is the least apt to select for resistance. However, recent salvage therapy regimens had low response rates with therapies that included DTG, suggesting that DTG resistance can be selected in patients.

View Article and Find Full Text PDF

Background: Integrase strand transfer inhibitors (INSTIs) are the class of antiretroviral (ARV) drugs most recently approved by the FDA for the treatment of HIV-1 infections. INSTIs block the strand transfer reaction catalyzed by HIV-1 integrase (IN) and have been shown to potently inhibit infection by wild-type HIV-1. Of the three current FDA-approved INSTIs, Dolutegravir (DTG), has been the most effective, in part because treatment does not readily select for resistant mutants.

View Article and Find Full Text PDF
Article Synopsis
  • Cyclic brush polymers have been found to be more effective than bottlebrush versions for drug and gene delivery due to their unique structure, but reduction-sensitive variants have not been previously explored.
  • This study successfully designed and synthesized a reduction-sensitive amphiphilic cyclic brush copolymer that features a block structure with both hydrophobic and hydrophilic components.
  • The resulting micelles display good stability in saline conditions and release drugs more effectively in reducing environments inside cells, highlighting their potential for improved anticancer therapy.
View Article and Find Full Text PDF

We tested three compounds for their ability to inhibit the RNase H (RH) and polymerase activities of HIV-1 reverse transcriptase (RT). A high-resolution crystal structure (2.2 Å) of one of the compounds showed that it chelates the two magnesium ions at the RH active site; this prevents the RH active site from interacting with, and cleaving, the RNA strand of an RNA-DNA heteroduplex.

View Article and Find Full Text PDF

Integrase mutations can reduce the effectiveness of the first-generation FDA-approved integrase strand transfer inhibitors (INSTIs), raltegravir (RAL) and elvitegravir (EVG). The second-generation agent, dolutegravir (DTG), has enjoyed considerable clinical success; however, resistance-causing mutations that diminish the efficacy of DTG have appeared. Our current findings support and extend the substrate envelope concept that broadly effective INSTIs can be designed by filling the envelope defined by the DNA substrates.

View Article and Find Full Text PDF