Publications by authors named "Xue-Yong Zhu"

NOX5 (NADPH oxidase 5) is a homolog of the gp91 subunit of the phagocyte NOX, which generates reactive oxygen species. NOX5 is involved in sperm motility and vascular contraction and has been implicated in diabetic nephropathy, atherosclerosis, and stroke. The function of NOX5 in the cardiac hypertrophy is unknown.

View Article and Find Full Text PDF

Hepatic ischemia-reperfusion (IR) injury is the leading cause of liver dysfunction and failure after liver resection or transplantation and lacks effective therapeutic strategies. Here, we applied a systematic proteomic analysis to identify the prominent contributors to IR-induced liver damage and promising therapeutic targets for this condition. Based on an unbiased proteomic analysis, we found that toll-interacting protein (Tollip) expression was closely correlated with the hepatic IR process.

View Article and Find Full Text PDF

Inhibition of apoptosis signal-regulating kinase 1 (ASK1) activation has emerged as a promising target for the treatment of nonalcoholic steatohepatitis (NASH). Multiple forms of posttranslational modifications determine the activity of ASK1. In addition to phosphorylation, recent studies revealed that ubiquitination is essential for ASK1 activation.

View Article and Find Full Text PDF

Background & Aims: The hepatic injury caused by ischemia/reperfusion (I/R) insult is predominantly determined by the complex interplay of sterile inflammation and liver cell death. Caspase recruitment domain family member 6 (CARD6) was initially shown to play important roles in NF-κB activation. In our preliminary studies, CARD6 downregulation was closely related to hepatic I/R injury in liver transplantation patients and mouse models.

View Article and Find Full Text PDF

Background: Carboxyl-terminal modulator protein (CTMP) has been implicated in cancer, brain injury, and obesity. However, the role of CTMP in pathological cardiac hypertrophy has not been identified.

Methods And Results: In this study, decreased expression of CTMP was observed in both human failing hearts and murine hypertrophied hearts.

View Article and Find Full Text PDF

Background: Tollip, a well-established endogenous modulator of Toll-like receptor signaling, is involved in cardiovascular diseases. The aim of this study was to investigate the role of Tollip in neointima formation and its associated mechanisms.

Methods And Results: In this study, transient increases in Tollip expression were observed in platelet-derived growth factor-BB-treated vascular smooth muscle cells and following vascular injury in mice.

View Article and Find Full Text PDF

Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis, insulin resistance and inflammation, and the pathogenic mechanism of NAFLD is poorly understood. Ubiquitin-specific peptidase 10 (USP10), a member of the ubiquitin-specific protease family, is involved in environmental stress responses, tumor growth, inflammation, and cellular metabolism. However, the role of USP10 in hepatic steatosis, insulin resistance, and inflammation remains largely unexplored.

View Article and Find Full Text PDF

Tumor progression locus 2 (TPL2), a serine/threonine kinase, has been regarded as a potentially interesting target for the treatment of various diseases with an inflammatory component. However, the function of TPL2 in regulating hepatocyte metabolism and liver inflammation during the progression of nonalcoholic fatty liver disease (NAFLD) is poorly understood. Here, we report that TPL2 protein expression was significantly increased in fatty liver from diverse species, including humans, monkeys, and mice.

View Article and Find Full Text PDF

Nonalcoholic steatohepatitis (NASH) is a common clinical condition that can lead to advanced liver diseases. Lack of effective pharmacotherapies for NASH is largely attributable to an incomplete understanding of its pathogenesis. The deubiquitinase cylindromatosis (CYLD) plays key roles in inflammation and cancer.

View Article and Find Full Text PDF

Background: Cardiac hypertrophy and its resultant heart failure are among the most common causes of mortality worldwide. Abnormal protein degradation, especially the impaired lysosomal degradation of large organelles and membrane proteins, is involved in the progression of cardiac hypertrophy. However, the underlying mechanisms have not been fully elucidated.

View Article and Find Full Text PDF

Activation of apoptosis signal-regulating kinase 1 (ASK1) in hepatocytes is a key process in the progression of nonalcoholic steatohepatitis (NASH) and a promising target for treatment of the condition. However, the mechanism underlying ASK1 activation is still unclear, and thus the endogenous regulators of this kinase remain open to be exploited as potential therapeutic targets. In screening for proteins that interact with ASK1 in the context of NASH, we identified the deubiquitinase tumor necrosis factor alpha-induced protein 3 (TNFAIP3) as a key endogenous suppressor of ASK1 activation, and we found that TNFAIP3 directly interacts with and deubiquitinates ASK1 in hepatocytes.

View Article and Find Full Text PDF

Hepatic ischemia-reperfusion (IR) injury is a common clinical issue lacking effective therapy and validated pharmacological targets. Here, using integrative 'omics' analysis, we identified an arachidonate 12-lipoxygenase (ALOX12)-12-hydroxyeicosatetraenoic acid (12-HETE)-G-protein-coupled receptor 31 (GPR31) signaling axis as a key determinant of the hepatic IR process. We found that ALOX12 was markedly upregulated in hepatocytes during ischemia to promote 12-HETE accumulation and that 12-HETE then directly binds to GPR31, triggering an inflammatory response that exacerbates liver damage.

View Article and Find Full Text PDF

Stroke is one of the leading causes of morbidity and mortality worldwide. Inflammation, oxidative stress, apoptosis, and excitotoxicity contribute to neuronal death during ischemic stroke; however, the mechanisms underlying these complicated pathophysiological processes remain to be fully elucidated. Here, we found that the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6) was markedly increased after cerebral ischemia/reperfusion (I/R) in mice.

View Article and Find Full Text PDF

Unlabelled: Nonalcoholic fatty liver disease (NAFLD) is a prevalent and complex disease that confers a high risk of severe liver disorders. Despite such public and clinical health importance, very few effective therapies are currently available for NAFLD. We report a protective function and the underlying mechanism of dual-specificity phosphatase 14 (DUSP14) in NAFLD and related metabolic disorders.

View Article and Find Full Text PDF

Background: The mechanisms underlying neointima formation remain unclear. Interferon regulatory factors (IRFs), which are key innate immune regulators, play important roles in cardiometabolic diseases. However, the function of IRF4 in arterial restenosis is unknown.

View Article and Find Full Text PDF

Cardiac hypertrophy occurs in response to numerous stimuli like neurohumoral stress, pressure overload, infection, and injury, and leads to heart failure. Mfge8 (milk fat globule-EGF factor 8) is a secreted protein involved in various human diseases, but its regulation and function during cardiac hypertrophy remain unexplored. Here, we found that circulating MFGE8 levels declined significantly in failing hearts from patients with dilated cardiomyopathy.

View Article and Find Full Text PDF

Atherosclerosis is a chronic inflammatory disease. LILRB4 is associated with the pathological processes of various inflammatory diseases. However, the potential function and underlying mechanisms of LILRB4 in atherogenesis remain to be investigated.

View Article and Find Full Text PDF

Unlabelled: Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis, impaired insulin sensitivity, and chronic low-grade inflammation. However, the pathogenic mechanism of NAFLD is poorly understood, which hinders the exploration of possible treatments. Here, we report that ubiquitin-specific protease 18 (USP18), a member of the deubiquitinating enzyme family, plays regulatory roles in NAFLD progression.

View Article and Find Full Text PDF

Non-alcoholic steatohepatitis (NASH) is an increasingly prevalent liver pathology that can progress from non-alcoholic fatty liver disease (NAFLD), and it is a leading cause of cirrhosis and hepatocellular carcinoma. There is currently no pharmacological therapy for NASH. Defective lysosome-mediated protein degradation is a key process that underlies steatohepatitis and a well-recognized drug target in a variety of diseases; however, whether it can serve as a therapeutic target for NAFLD and NASH remains unknown.

View Article and Find Full Text PDF
Article Synopsis
  • - Nonalcoholic steatohepatitis (NASH) is a serious liver disease often linked with metabolic syndrome, for which there are currently no effective medications.
  • - The study reveals that CFLAR (CASP8 and FADD-like apoptosis regulator) plays a crucial role in suppressing NASH by blocking a specific signaling pathway involving the kinases MAP3K5 (ASK1) and MAPK8 (JNK1).
  • - Researchers found that a small peptide from CFLAR can slow the progression of NASH in animal models by preventing ASK1 dimerization, suggesting that drugs mimicking this peptide or targeting ASK1 could be promising treatments for NASH.
View Article and Find Full Text PDF

Background: Vinexin β is a novel adaptor protein that regulates cellular adhesion, cytoskeletal reorganization, signal transduction, and transcription; however, the exact role that vinexin β plays in atherosclerosis remains unknown.

Methods And Results: Immunoblot analysis showed that vinexin β expression is upregulated in the atherosclerotic lesions of both patients with coronary heart disease and hyperlipemic apolipoprotein E-deficient mice and is primarily localized in macrophages indicated by immunofluorescence staining. The high-fat diet-induced double-knockout mice exhibited lower aortic plaque burdens than apolipoprotein E littermates and decreased macrophage content.

View Article and Find Full Text PDF