Objectives: To apply the convolutional neural network (CNN) Inception_v3 model in automatic identification of acceleration and deceleration injury based on CT images of brain, and to explore the application prospect of deep learning technology in forensic brain injury mechanism inference.
Methods: CT images from 190 cases with acceleration and deceleration brain injury were selected as the experimental group, and CT images from 130 normal brain cases were used as the control group. The above-mentioned 320 imaging data were divided into training validation dataset and testing dataset according to random sampling method.
Objectives: To study the correlation between CT imaging features of acceleration and deceleration brain injury and injury degree.
Methods: A total of 299 cases with acceleration and deceleration brain injury were collected and divided into acceleration brain injury group and deceleration brain injury group according to the injury mechanism. Subarachnoid hemorrhage (SAH) and Glasgow coma scale (GCS), combined with skull fracture, epidural hematoma (EDH), subdural hematoma (SDH) and brain contusion on the same and opposite sides of the stress point were selected as the screening indexes.