Assessing regional carbon emissions and their relationship with socio-economic conditions is very important for developing strategies for carbon emission reduction. This study explored the impact of the proportion of non-fossil energy, the land development degree, the urbanization rate of permanent residents, the proportion of secondary industry, per capita GDP, and per capita construction land area on per capita CO emissions in 339 prefecture-level and above cities in China (excluding some cities in Xinjiang, Hong Kong, Macao, and Taiwan). A Bayesian belief network modeling carbon emissions was constructed to identify the global effects of various factors on per capita CO emissions, and multiscale geographically weighted regression was used to analyze their local effects.
View Article and Find Full Text PDF