Publications by authors named "Xue-Ran Deng"

In order to improve laser transmission efficiency at 1053 nm and 527 nm, a potassium deuterium phosphate (DKDP) crystal (a key component of high-power laser systems) needs a bi-layer antireflection coating system on its incident surface. UV-curable polysiloxane coatings with a refractive index varying from 1.500 to 1.

View Article and Find Full Text PDF

The purpose of this study is to analyze the damage of antireflective (AR) coating over potassium dihydrogen phosphate (KDP) crystal subjected to multi-pulse laser irradiation at low flux under vacuum. Fresh silica AR was characterized as a reference; Atomic Force Microscope (AFM), Scanning Electron Microscopy (SEM), profilometer, and Scanning Near-Field Optical Microscope Photo-induced Force Microscope (SNOM-PiFM) were employed to analyze the characteristics of coatings. The experimental results indicated that the damage of AR coating over the KDP crystal was mainly caused by partial exfoliation, which exposed silica particles beneath the surface.

View Article and Find Full Text PDF

A refractive index (RI) tunable polysiloxane coating was fabricated based on the cross-linked network structure embedded with mesoporous silica nanoparticles (MSNs), in which the MSNs were utilized to modulate the RI as well as to support the interior structure of the polysiloxane coating. The Si-O-Si inorganic backbone structure in combination with characteristics from the photopolymerization of active bonds produced the main cross-linked network structure, and controllable embedding of MSNs constructed the network-sphere structure. This approach eliminated the high-temperature post-treatment that was needed to remove the template, which ensures the safe application for temperature-sensitive laser crystal substrates and avoids coating structure collapse.

View Article and Find Full Text PDF