Understanding protein function is pivotal in comprehending the intricate mechanisms that underlie many crucial biological activities, with far-reaching implications in the fields of medicine, biotechnology, and drug development. However, more than 200 million proteins remain uncharacterized, and computational efforts heavily rely on protein structural information to predict annotations of varying quality. Here, we present a method that utilizes statistics-informed graph networks to predict protein functions solely from its sequence.
View Article and Find Full Text PDFThe amino acid sequence of a protein contains all the necessary information to specify its shape, which dictates its biological activities. However, it is challenging and expensive to experimentally determine the three-dimensional structure of proteins. The backbone torsion angles play a critical role in protein structure prediction, and accurately predicting the angles can considerably advance the tertiary structure prediction by accelerating efficient sampling of the large conformational space for low energy structures.
View Article and Find Full Text PDFCuckoo search (CS) algorithm is a nature-inspired search algorithm, in which all the individuals have identical search behaviors. However, this simple homogeneous search behavior is not always optimal to find the potential solution to a special problem, and it may trap the individuals into local regions leading to premature convergence. To overcome the drawback, this paper presents a new variant of CS algorithm with nonhomogeneous search strategies based on quantum mechanism to enhance search ability of the classical CS algorithm.
View Article and Find Full Text PDFProtein fold recognition is an important and essential step in determining tertiary structure of a protein in biological science. In this study, a model termed NiRecor is developed for recognizing protein folds based on artificial neural networks incorporated in an adaptive heterogeneous particle swarm optimizer. The main contribution of NiRecor is that it is a data-driven and highly-performing predictor without manually tuning control parameters for different data sets.
View Article and Find Full Text PDFAs a nature-inspired search algorithm, firefly algorithm (FA) has several control parameters, which may have great effects on its performance. In this study, we investigate the parameter selection and adaptation strategies in a modified firefly algorithm - adaptive firefly algorithm (AdaFa). There are three strategies in AdaFa including (1) a distance-based light absorption coefficient; (2) a gray coefficient enhancing fireflies to share difference information from attractive ones efficiently; and (3) five different dynamic strategies for the randomization parameter.
View Article and Find Full Text PDF