Publications by authors named "Xue-Meng Jia"

Background: Albuminuria is a hallmark of diabetic kidney disease (DKD) that promotes its progression, leading to renal fibrosis. Renal macrophage function is complex and influenced by macrophage metabolic status. However, the metabolic state of diabetic renal macrophages and the impact of albuminuria on the macrophage metabolic state are poorly understood.

View Article and Find Full Text PDF

Phospholipids-rich goat milk provides health benefits to consumers. The effects of homogenization on the disruption and recombination of milk fat globule membrane and change the fatty acid positional distribution in glycerophospholipids profile by phosphatidylcholine metabolism pathways were investigated. Goat milk was homogenized at different intensity pressure.

View Article and Find Full Text PDF

Inflammatory pain is a chronic, persistent and serious disease that greatly impacts public health, which is often accompanied by allodynia, hyperalgesia, and spontaneous pain. It is evident that α7 nicotinic acetylcholine receptor (α7nAChR) plays a key role in cholinergic anti-inflammatory pathway and exhibits the inhibition of neuroinflammation in chronic pain. Trifluoro-icaritin (ICTF), a derivative of icaritin from the extract of a genus of Epimedium plant, is identified to possess profound anti-inflammatory activity.

View Article and Find Full Text PDF

Neuropathic pain is still one of the unsolved public health problems worldwide. Although the current reagents can attenuate neuropathic pain to a certain extent, their clinical application is very limited owing to larger toxicity and serious side effects. Trifluoro-icaritin (ICTF) has been documented to possess profound anti-inflammatory and neuroprotective activities, but whether ICTF exerts an anti-nociceptive effect on neuropathic pain remains unknown.

View Article and Find Full Text PDF

Introduction: As a key event leading to tubulointerstitial fibrosis in diabetic kidney disease (DKD), epithelial-mesenchymal transition (EMT) has drawn increasing attention from researchers. The antiaging protein Klotho attenuates renal fibrosis in part by inhibiting ERK1/2 signaling in DKD. Early growth response factor 1 (Egr-1), which is activated mainly by ERK1/2, has been shown to play an important role in EMT.

View Article and Find Full Text PDF

Background: Diabetic kidney disease (DKD) is a serious complication of diabetes mellitus and results in serious public health problems. Although a great number of studies have been performed to elucidate the mechanisms of this disease, these mechanisms remain largely unknown.

Methods: Cell and animal models were first constructed using human renal proximal tubule cells stimulated by high glucose (HG) and mice induced by streptozotocin (STZ).

View Article and Find Full Text PDF

The effect of exosomes on receptor cells participating in intercellular communication has been extensively studied, but the effect of exosomes on donor cells remains unclear. It has been reported that exosomes secreted by renal proximal tubular epithelial cells (PTECs) under different stimuli accelerate acute and chronic kidney diseases. This study aimed to explore whether inhibiting exosomal secretion in PTECs by knocking out Rab27a, a key exosome regulatory gene, inhibits the excessive inflammatory response in PTECs and delays diabetic kidney disease (DKD).

View Article and Find Full Text PDF

Klotho, an antiaging protein, has been shown to play a protective role in renal tubular epithelial-mesenchymal transition (EMT) during the development of diabetic kidney disease (DKD). Long noncoding RNAs (lncRNAs) participate in the progression of EMT in many diseases. However, the effect of Klotho on lncRNAs during the development of DKD is still unknown.

View Article and Find Full Text PDF

Renal fibrosis is at the core of various renal diseases, including diabetic kidney disease (DKD). Long noncoding RNAs (lncRNAs) are known players in the regulation of renal fibrosis. However, their expression and function in DKD still need to be elucidated.

View Article and Find Full Text PDF

Albumin absorbed by renal tubular epithelial cells induces inflammation and plays a key role in promoting diabetic kidney disease (DKD) progression. Macrophages are prominent inflammatory cells in the kidney, and their role there is dependent on their phenotypes. However, whether albuminuria influences macrophage phenotypes and underlying mechanisms during the development of DKD is still unclear.

View Article and Find Full Text PDF

Diabetic kidney disease (DKD) has surpassed chronic glomerulonephritis as the leading cause of end-stage renal disease. Previously, we showed that early growth response protein-1 (Egr1) plays a key role in DKD by enhancing mesangial cell proliferation and extracellular matrix (ECM) production. The long noncoding RNA (lncRNA) AT-rich interactive domain 2-IR (Arid2-IR) has been identified as a mothers against decapentaplegic homolog 3 (Smad3)-associated lncRNA in unilateral ureteral obstructive kidney disease.

View Article and Find Full Text PDF

Background: NADPH oxidase 4 (NOX4) plays a major role in renal oxidative stress of diabetic kidney disease (DKD). NOX4 was significantly increased in Egr1-expressing fibroblasts, but the relationship between Egr1 and NOX4 in DKD is unclear.

Methods: For the evaluation of the potential relationship between Egr1 and NOX4, both were detected in HFD/STZ-induced mice and HK-2 cells treated with TGF-1.

View Article and Find Full Text PDF

Tubulointerstitial fibrosis (TIF) is crucial in the development of renal fibrosis in diabetic nephropathy(DN). Previous data shows that SIRT1 plays an important role on fibrosis, but the effect on TIF in DN and underlying mechanisms remains uncertain. In this study, we evaluated the vital role of SIRT1 and identified SIRT1 as a downstream target gene of microRNA-34a-5p (miR-34a-5p) in TIF of DN.

View Article and Find Full Text PDF

Background: Albuminuria is an early sign but not a strong predictor of diabetic kidney disease (DKD). Owing to their high stability, urinary exosomal miRNAs can be useful predictors of the progression of early-stage DKD to renal failure; fluid biopsies are ideal for detecting abnormalities in these miRNAs. The aim of this study was to identify novel differentially expressed miRNAs as urine biomarkers for type 2 DKD by comparing between patients of type 2 diabetes (T2D) with and without macroalbuminuria.

View Article and Find Full Text PDF

Diabetic kidney disease (DKD) has become the leading cause of end-stage renal disease worldwide and is associated with glomerular mesangial cell (MC) proliferation and excessive extracellular matrix (ECM) production. Klotho can attenuate renal fibrosis in part by inhibiting TGF-β1/Smad3 signaling in DKD. Early growth response factor 1 (Egr-1) has been shown to play a key role in renal fibrosis in part by facilitating the formation of a positive feedback loop involving TGF-β1.

View Article and Find Full Text PDF