Publications by authors named "Xue-Hong Wei"

The plant hormone auxin orchestrates almost all aspects of plant growth and development. AUXIN RESPONSE FACTORs (ARFs) control the transcription of auxin-responsive genes, forming cytoplasmic condensates to modulate auxin sensitivity and diversify auxin response regulation. However, the dynamic control of ARF distribution across different subcellular compartments remains largely obscure.

View Article and Find Full Text PDF

Leaf senescence is a complex process regulated by developmental and environmental factors, and plays a pivotal role in the development and life cycle of higher plants. Casein kinase 1 (CK1) is a highly conserved serine/threonine protein kinase in eukaryotes and functions in various cellular processes including cell proliferation, light signaling and hormone effects of plants. However, the biological function of CK1 in plant senescence remains unclear.

View Article and Find Full Text PDF

Brassinosteroid (BR) is a vital plant hormone that regulates plant growth and development. BRASSINAZOLE RESISTANT 1 (BZR1) is a key transcription factor in BR signaling, and its nucleocytoplasmic localization is crucial for BR signaling. However, the mechanisms that regulate BZR1 nucleocytoplasmic distribution and thus the homeostasis of BR signaling remain largely unclear.

View Article and Find Full Text PDF

The drought caused by global warming seriously affects the crop growth and agricultural production. Plants have evolved distinct strategies to cope with the drought environment. Under drought stress, energy and resources should be diverted from growth toward stress management.

View Article and Find Full Text PDF

Natural astaxanthin is a high-value ketone carotenoid mainly derived from , which is an excellent antioxidant for human consumption. To study the role of lipids in accumulation of astaxanthin, the -derived astaxanthin synthesis pathway genes (β-carotene ketolase gene, and β-carotene hydroxylase gene, ) and fatty acid elongation gene (mitochondrial trans-2-enoyl-coa reductase gene, ) were heterologously co-expressed in . Zeaxanthin, the precursor of astaxanthin synthesis, was significantly increased after and were expressed.

View Article and Find Full Text PDF

Lipids establish the specialized thylakoid membrane of chloroplast in eukaryotic photosynthetic organisms, while the molecular basis of lipid transfer from other organelles to chloroplast remains further elucidation. Here we revealed the structural basis of Sec14 homology proteins AtSFH5 and AtSFH7 in transferring phosphatidic acid (PA) from endoplasmic reticulum (ER) to chloroplast, and whose function in regulating the lipid composition of chloroplast and thylakoid development. AtSFH5 and AtSFH7 localize at both ER and chloroplast, whose deficiency resulted in an abnormal chloroplast structure and a decreased thickness of stacked thylakoid membranes.

View Article and Find Full Text PDF

In Arabidopsis thaliana, female gametophyte (FG) development is accompanied by the formation and expansion of the large vacuole in the FG; this is essential for FG expansion, nuclear polar localization, and cell fate determination. Arabidopsis VACUOLELESS GAMETOPHYTES (VLG) facilitates vesicular fusion to form large vacuole in the FG, but the regulation of VLG remains largely unknown. Here, we found that gain-of-function mutation of BRASSINOSTEROID INSENSITIVE2 (BIN2) (bin2-1) increases VLG abundance to induce the vacuole formation at stage FG1, and leads to abortion of FG.

View Article and Find Full Text PDF

Embryonic development is a key developmental event in plant sexual reproduction; however, regulatory networks of plant early embryonic development, particularly the effects and functional mechanisms of phospholipid molecules are still unknown due to the limitation of sample collection and analysis. We innovatively applied the microspore-derived in vitro embryogenesis of Brassica napus and revealed the dynamics of phospholipid molecules, especially phosphatidic acid (PA, an important second messenger that plays an important role in plant growth, development, and stress responses), at different embryonic developmental stages by using a lipidomics approach. Further analysis of Arabidopsis mutants deficiency of CDS1 and CDS2 (cytidinediphosphate diacylglycerol synthase, key protein in PA metabolism) revealed the delayed embryonic development from the proembryo stage, indicating the crucial effect of CDS and PA metabolism in early embryonic development.

View Article and Find Full Text PDF

Heading date, panicle architecture, and grain size are key traits that affect the yield of rice (Oryza sativa). Here, we identified a new gene, OsGATA6, whose product regulates heading date. Overexpression of OsGATA6 resulted in delayed heading, increased grain number, and decreased grain size.

View Article and Find Full Text PDF

Macroautophagy/autophagy is a finely-regulated process in which cytoplasm encapsulated within transient organelles termed autophagosomes is delivered to lysosomes or vacuoles for degradation. Phospholipids, particularly phosphatidic acid (PA) that functions as a second messenger, play crucial and differential roles in autophagosome formation; however, the underlying mechanism remains largely unknown. Here we demonstrated that PA inhibits autophagy through competitive inhibition of the formation of ATG3 (autophagy-related)-ATG8e and ATG6-VPS34 (vacuolar protein sorting 34) complexes.

View Article and Find Full Text PDF

Ovule initiation determines the maximum ovule number and has great impact on seed number and yield. However, the regulation of ovule initiation remains largely elusive. We previously reported that most of the ovule primordia initiate asynchronously at floral stage 9 and PINFORMED1 (PIN1) polarization and auxin distribution contributed to this process.

View Article and Find Full Text PDF

Potato is the fourth most important food crop in the world. Although with a long history for breeding approaches, genomic information and association between genes and agronomic traits remain largely unknown particularly in autotetraploid potato cultivars, which limit the molecular breeding progression. By resequencing the genome of 108 main cultivar potato accessions with rich genetic diversity and population structure from International Potato Center, with approximate 20-fold coverage, we revealed more than 27 million Single Nucleotide Polymorphisms and ~ 3 million Insertion and Deletions with high quality and accuracy.

View Article and Find Full Text PDF

Background: Adult sporadic Burkitt lymphoma (BL) is a rare but highly aggressive subtype of lymphoma which lacks its own unique prognostic model. Systemic inflammatory biomarkers have been confirmed as prognostic markers in several types of malignancy. Our objective was to explore the predictive value of pretreatment inflammatory biomarkers and establish a novel, clinically applicable prognostic index for adult patients with sporadic BL.

View Article and Find Full Text PDF

Phospholipase D (PLD) hydrolyzes membrane phospholipids and is crucial in various physiological processes and transduction of different signals. Secretory phospholipases play important roles in mammals, however, whose functions in plants remain largely unknown. We previously identified a rice secretory PLD (spPLD) that harbors a signal peptide and here we reported the secretion and function of spPLD in rice heading time regulation.

View Article and Find Full Text PDF

Ovule initiation is a key step that strongly influences ovule number and seed yield. Notably, mutants with enhanced brassinosteroid (BR) and cytokinin (CK) signaling produce more ovules and have a higher seed number per silique (SNS) than wild-type plants. Here, we crossed BR- and CK-related mutants to test whether these phytohormones function together in ovule initiation.

View Article and Find Full Text PDF

Cell cycle is one of the most fundamentally conserved biological processes of plants and mammals. Casein kinase1s (CK1s) are critical for cell proliferation in mammalian cells; however, how CK1s coordinate cell division in plants remains unknown. Through genetic and biochemical studies, here we demonstrated that plant CK1, Arabidopsis (Arabidopsis thaliana) EL1-like (AELs), regulate cell cycle/division by modulating the stability and inhibitory effects of Kip-related protein6 (KRP6) through phosphorylation.

View Article and Find Full Text PDF

The quality control system for messenger RNA (mRNA) is fundamental for cellular activities in eukaryotes. To elucidate the molecular mechanism of 3'-phosphoinositide-dependent protein kinase1 (PDK1), a master regulator that is essential throughout eukaryotic growth and development, we employed a forward genetic approach to screen for suppressors of the loss-of-function T-DNA insertion double mutant pdk1.1 pdk1.

View Article and Find Full Text PDF

Plant architecture plays a major role in canopy photosynthesis and biomass production, and plants adjust their growth (and thus architecture) in response to changing environments. Leaf angle is one of the most important traits in rice (Oryza sativa L.) plant architecture, because leaf angle strongly affects leaf direction and rice production, with more-erect leaves being advantageous for high-density plantings.

View Article and Find Full Text PDF

Root development is important for normal plant growth and nutrient absorption. Studies have revealed the involvement of various factors in this complex process, improving our understanding of the relevant regulatory mechanisms. Here, we functionally characterize the role of Arabidopsis () phosphatidylinositol 4-kinase γ2 (PI4Kγ2) in root elongation regulation, which functions to modulate stability of the RING-type E3 ligase MYB30-INTERACTING E3 LIGASE1 (MIEL1) and auxin metabolism.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers identified 45 rice mutants with strong resistance to BPH from a large population, focusing on the role of the mitochondrial outer membrane protein 64 (OM64).
  • * The OM64 gene deficiency increased resistance to both BPH and SSB by enhancing hydrogen peroxide signaling and jasmonic acid biosynthesis, without impacting rice yield, highlighting its potential as a target for improving pest resistance.
View Article and Find Full Text PDF