This work demonstrates thermal regeneration of gratings inscribed in a new type of multi-material glass-based photosensitive fiber. And isothermal annealing procedure has been carried out on a type-I seed grating (SG) imprinted in erbium-doped zirconia-yttria-alumina-germanium (Er-ZYAG) silica glass-based fiber, which is initiated from room temperature of 25°C up to 900°C. The findings show that the created regenerated grating (RG) has an ultrahigh thermal regeneration ratio with a value of 0.
View Article and Find Full Text PDFA Mach-Zehnder interferometric magnetic field sensor based on a photonic crystal fiber (PCF) and magnetic fluid (MF) was designed and experimentally demonstrated. The sensing probe consists of a single-mode-(SM)-multimode-PCF-SM fiber structure through arc fusion splicing. It was then laser engrave notched with the femtosecond laser so that the PCF cladding was selectively infilled MF.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
September 2016
A fiber humidity sensor based on Fiber-Bragg Grating (FBG) sandwiched in single-mode-multimode fiber core-single mode (SMS) fiber structure is proposed and demonstrated. When the surrounding humidity changes, the central wavelength of FBG remains unchanged for it is insensitive to humidity, while the interference spectrum of SMS fiber structure will shift for it is sensitive to the surrounding humidity. Hence, the shift of the SMS fiber structure interference spectrum with humidity could modulate the FBG core mode.
View Article and Find Full Text PDFThe work demonstrates for the first time a thermal regenerated grating (RG) operating at an ultra-high temperature up to 1400°C. A new class of photosensitive optical fiber based on erbium-doped yttrium stabilized zirconia-calcium-alumina-phospho silica (Er-YZCAPS) glass is fabricated using modified chemical vapor deposition (MCVD) process, followed by solution doping technique and conventional fiber drawing. A type-I seed grating inscribed in this fiber is thermal regenerated based on the conventional thermal annealing technique.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
June 2014
Optical fiber sensing technology is one of the very promising techniques in sensing fields. A high sensitivity high temperature sensor based on inline optical fiber Mach-Zehnder(M-Z) interferometer by using standard single mode fiber with two waist-enlarged bitapers is proposed in the present paper. The waist-enlarged bitapers are considered as couplers, the distance between the two bitapers is the sensing arm.
View Article and Find Full Text PDFWe present a new theoretical model for the broadband reflection spectra of etched FBGs which includes the effects of axial contraction and stress-induced index change. The reflection spectra of the etched FBGs with several different taper profiles are simulated based on the proposed model. In our observation, decaying exponential profile produces a broadband reflection spectrum with good uniformity over the range of 1540-1560 nm.
View Article and Find Full Text PDFGuang Pu Xue Yu Guang Pu Fen Xi
September 2012
A simultaneous measurement system of temperature and strain is proposed and fabricated, which has advantages of low cost and easy structure. The system is formed by combining a long period fiber grating with a polarization-maintaining fiber Sagnac loop. The transmission spectrum of the fiber Sagnac interferometer is modulated by LPFG.
View Article and Find Full Text PDF