P2X receptors, a subfamily of ligand-gated ion channels activated by extracellular ATP, are implicated in various physiopathological processes, including inflammation, pain perception, and immune and respiratory regulations. Structural determinations using crystallography and cryo-EM have revealed that the extracellular three-dimensional architectures of different P2X subtypes across various species are remarkably identical, greatly advancing our understanding of P2X activation mechanisms. However, structural studies yield paradoxical architectures of the intracellular domain (ICD) of different subtypes (e.
View Article and Find Full Text PDFIt is recognized that the cerebral ischemia/reperfusion (I/R) injury triggers inflammatory activation of microglia and supports microglia-driven neuronal damage. Our previous studies have shown that ginsenoside Rg1 had a significant protective effect on focal cerebral I/R injury in middle cerebral artery occlusion (MCAO) rats. However, the mechanism still needs further clarification.
View Article and Find Full Text PDFEvid Based Complement Alternat Med
December 2022
Retinal pericyte migration occurs in the early stage of diabetic retinopathy (DR), which is one of the important causes of pericyte loss. Autophagy has been found to play essential roles in the regulation of many types of cell migration. In this study, we explored the relationship between autophagy and retinal pericyte migration.
View Article and Find Full Text PDFP2X receptors are a class of nonselective cation channels widely distributed in the immune and nervous systems, and their dysfunction is a significant cause of tumors, inflammation, leukemia, and immune diseases. P2X7 is a unique member of the P2X receptor family with many properties that differ from other subtypes in terms of primary sequence, the architecture of N- and C-terminals, and channel function. Here, we suggest that the observed lengthened β2- and β3-sheets and their linker (loop β2,3), encoded by redundant sequences, play an indispensable role in the activation of the P2X7 receptor.
View Article and Find Full Text PDFTransient receptor potential canonical (TRPC) channels, as important membrane proteins regulating intracellular calcium (Ca) signaling, are involved in a variety of physiological and pathological processes. Activation and regulation of TRPC are more dependent on membrane or intracellular signals. However, how extracellular signals regulate TRPC6 function remains to be further investigated.
View Article and Find Full Text PDFHighly conserved amino acids are generally anticipated to have similar functions across a protein superfamily, including that of the P2X ion channels, which are gated by extracellular ATP. However, whether and how these functions are conserved becomes less clear when neighboring amino acids are not conserved. Here, we investigate one such case, focused on the highly conserved residue from P2X4, E118 (rat P2X4 numbering, rP2X4), a P2X subtype associated with human neuropathic pain.
View Article and Find Full Text PDFGLP-1 analogs have been widely used to treat patients with type 2 diabetes in recent years and studies have found that GLP-1 analogs have multiple organ benefits. However, the role of GLP-1 analogs in diabetic retinopathy (DR), a common complication of diabetes mellitus (DM), remains controversial. Retinal ganglion cells (RGCs) are the only afferent neurons responsible for transmitting visual information to the visual center and are vulnerable in the early stage of DR.
View Article and Find Full Text PDFZhongguo Shi Yan Xue Ye Xue Za Zhi
October 2019
Abstract The promyelocytic leukemia (PML) gene encoded PML protein as a tumor suppressor protein, plays important roles in the occurrence and development of various cancers including acute promyelocytic leukemia. Recent studies have indicated that there are a variety of post-translational modifications of the PML protein, such as SUMOylation, ubiquitination, phosphorylation, and acetylation in cells. These modifications of the PML protein can directly affect the formation of PML nuclear bodies (PML-NBs), repair DNA damage, and modulate cell apoptosis.
View Article and Find Full Text PDFObjective: This study is aimed at investigating whether exenatide (Exe) delays the progression of nonalcoholic fatty liver disease (NAFLD) in C57BL/6 mice by targeting the NLRP3 inflammasome through the autophagy/mitophagy pathway.
Methods: Thirty male C57BL/6 mice were randomly divided into three groups: control group ( = 10), model group ( = 10), and Exe (exenatide) group ( = 10). Mouse models of NAFLD and diabetes were established using a high-fat diet and streptozocin.
Retinal pericyte migration represents a novel mechanism of pericyte loss in diabetic retinopathy (DR), which plays a crucial role in the early impairment of the blood-retinal barrier (BRB). Glucagon-like peptide-1 (GLP-1) has been shown to protect the diabetic retina in the early stage of DR; however, the relationship between GLP-1 and retinal pericytes has not been discussed. In this study, advanced glycation end products (AGEs) significantly increased the migration of primary bovine retinal pericytes without influencing cell viability.
View Article and Find Full Text PDFP2X receptors are ATP-gated trimeric channels with important roles in diverse pathophysiological functions. A detailed understanding of the mechanism underlying the gating process of these receptors is thus fundamentally important and may open new therapeutic avenues. The left flipper (LF) domain of the P2X receptors is a flexible loop structure, and its coordinated motions together with the dorsal fin (DF) domain are crucial for the channel gating of the P2X receptors.
View Article and Find Full Text PDF