Publications by authors named "Xue-Bo Hu"

To advance the biological understanding of heat shock protein (HSP) in different types of cancers, it is crucial to achieve its accurate determination. Herein, a dual-mode self-powered photoelectrochemical (PEC) and colorimetric platform was proposed by integrating enzymatic catalysis and a chemical redox cycling amplification strategy. In this system, ascorbic acid (AA), as the signal reporter for PEC and colorimetric assay, can be regenerated during the tris(2-carboxyethyl) phosphine-mediated chemical redox cycling process.

View Article and Find Full Text PDF
Article Synopsis
  • The in situ growth reaction on a photoelectrode shows significant promise for enhancing photoelectrochemical (PEC) bioanalysis, though specific interactions between signaling species and photoactive materials can limit their use.
  • A new PEC immunoassay was developed using a single-atom photoactive material (BiOI-Fe SAs) combined with Ag nanoparticles as tracers, involving a sandwich immunoreaction and PEC detection in a split-type mode.
  • The immunosensor demonstrated a wide detection range for myoglobin, achieving a notable sensitivity, thus broadening the application of in situ growth reactions in PEC analysis for disease-related protein diagnostics.
View Article and Find Full Text PDF

Andrographis paniculata is an important medicinal plant in the Lingnan region of China, which has the functions of clearing heat, removing toxins, and resisting bacteria and inflammation. The TCP gene family is a class of transcription factors that regulate plant growth, development, and stress response. In order to analysis the role of the TCP gene family under abiotic stress in A.

View Article and Find Full Text PDF

For real-time evaluation of the cell behavior and function under in vivo-like 3D environment, the 3D functionalized scaffolds simultaneously integrate the function of 3D cell culture, and electrochemical sensing is a convincing candidate. Herein, FeO nanoparticles as the nanozyme (peroxide oxidase mimics) were modified on graphene foam scaffold to construct a 3D integrated platform. The platform displayed a wide linear range of 100 nM to 20 μM and a high sensitivity of 53.

View Article and Find Full Text PDF

In the field of three-dimensional (3D) cell culture and tissue engineering, great advance focusing on functionalized materials and desirable culture systems has been made to mimic the natural environment of cells in vivo. Mechanical loading is one of the critical factors that affect cell/tissue behaviors and metabolic activities, but the reported models or detection methods offer little direct and real-time information about mechanically induced cell responses. Herein, for the first time, a stretchable and multifunctional platform integrating 3D cell culture, mechanical loading, and electrochemical sensing is developed by immobilization of biomimetic peptide linked gold nanotubes on porous and elastic polydimethylsiloxane.

View Article and Find Full Text PDF

Three-dimensional (3D) cell culture can better reproduce the cell environment and has been extensively used in fields such as tissue engineering, drug screening, and pathological research. Despite the tremendous advancement of 3D cultures, an analysis technique that could collect real-time information of the biological processes therein is sorely lacking. Electrochemical sensing with fast response and high sensitivity has played a vital role in real-time monitoring of living cells, but most current sensors are based on planar electrodes and fail to perfectly match the 3D cell culture matrix.

View Article and Find Full Text PDF

Vascular endothelial cells (ECs) are natively exposed to dynamic cyclic stretch and respond to it by the production of vasoactive molecules. Among them, reactive oxygen species (ROS) are closely implicated to the endothelial function and vascular homeostasis. However, the dynamic monitoring of ROS release during endothelial mechanotransduction remains a steep challenge.

View Article and Find Full Text PDF

Remarkable progresses have been made in electrochemical monitoring of living cells based on one-dimensional (1D) or two-dimensional (2D) sensors, but the cells cultured on 2D substrate under these circumstances are departed from their three-dimensional (3D) microenvironments in vivo. Significant advances have been made in developing 3D culture scaffolds to simulate the 3D microenvironment yet most of them are insulated, which greatly restricts their application in electrochemical sensing. Herein, we propose a versatile strategy to endow 3D insulated culture scaffolds with electrochemical performance while granting their biocompatibility through conductive polymer coating.

View Article and Find Full Text PDF

Current achievements on electrochemical monitoring of cells are often gained on two-dimensional (2D) substrates, which fail in mimicking the cellular environments and accurately reproducing the cellular functions within a three-dimensional (3D) tissue. In this regard, 3D scaffold concurrently integrated with the function of cell culture and electrochemical sensing is conceivably a promising platform to monitor cells in real time under their in vivo-like 3D microenvironments. However, it is particularly challenging to construct such a multifunctional scaffold platform.

View Article and Find Full Text PDF

Existing methods offer little direct and real-time information about stretch-triggered biochemical responses during cell mechanotransduction. A novel stretchable electrochemical sensor is reported that takes advantage of a hierarchical percolation network of carbon nanotubes and gold nanotubes (CNT-AuNT). This hybrid nanostructure provides the sensor with excellent time-reproducible mechanical and electrochemical performances while granting very good cellular compatibility, making it perfectly apt to induce and monitor simultaneously transient biochemical signals.

View Article and Find Full Text PDF

Stretchable electrochemical sensors are conceivably a powerful technique that provides important chemical information to unravel elastic and curvilinear living body. However, no breakthrough was made in stretchable electrochemical device for biological detection. Herein, we synthesized Au nanotubes (NTs) with large aspect ratio to construct an effective stretchable electrochemical sensor.

View Article and Find Full Text PDF