Electron diffraction spectroscopy is a fundamental tool for investigating quasicrystal structures, which unveils the quasiperiodic long-range order. Nevertheless, it falls short in effectively distinguishing separate local isomorphism classes. This is a long outstanding problem.
View Article and Find Full Text PDFConsiderable progress has been made in the experimental studies on laser-induced terahertz (THz) radiation in liquids. Liquid THz demonstrates many unique features different from the gas and plasma THz. For example, the liquid THz can be efficiently produced by a monochromatic laser.
View Article and Find Full Text PDFWe experimentally and theoretically study high-order harmonic generation in zinc oxide crystals irradiated by mid-infrared lasers. The trajectories are mapped to the far field spatial distribution of harmonics. The divergence angles of on-axis and off-axis parts exhibit different dependences on the order of the harmonics.
View Article and Find Full Text PDFPhys Rev Lett
November 2021
High-order harmonic generation (HHG) in solids was expected to be efficient due to their high density. However, the strict transition laws in crystals restrict the number of HHG channels. Quasicrystals with fractal band structures could solve this problem and produce multichannel HHG emissions, which has been rarely studied.
View Article and Find Full Text PDFHigh harmonic generation (HHG) from gases and solids has been studied extensively. Whereas for liquids, it is far more challenging to understand the ultrafast dynamics with conventional methods. From a statistical perspective, we investigate the liquid-phase HHG theoretically by using a disordered linear chain.
View Article and Find Full Text PDFIntraband high-order harmonics in solids reflect the nonlinear motion of carriers in the energy bands and have important applications. In general, multiple energy bands contribute to the intraband harmonics. We reveal the interference mechanism of intraband harmonics between electrons and holes by using the k-resolved semiclassical intraband model.
View Article and Find Full Text PDFTerahertz (THz) waves can be generated by the nonlinear interaction between ultrashort laser pulses and air. The semiclassical photocurrent model is widely used. It is simple, but neglects the quantum effects.
View Article and Find Full Text PDFWe studied the high-order harmonic generation (HHG) from 2D solid materials in circularly and bichromatic circularly polarized laser fields numerically by simulating the dynamics of single-active-electron processes in 2D periodic potentials. Contrary to the absence of HHG in the atomic case, circular HHGs below the bandgap with different helicities are produced from intraband transitions in solids with symmetry driven by circularly polarized lasers. Harmonics above the bandgap are elliptically polarized due to the interband transitions.
View Article and Find Full Text PDFMolecules constituted by different isotopes are different in vibrational modes, making it possible to elucidate the mechanism of a chemical reaction via the kinetic isotope effect. However, the real-time observation of the vibrational motion of isotopic nuclei in molecules is still challenging due to its ultrashort time scale. Here we demonstrate a method to monitor the nuclear vibration of isotopic molecules with the frequency modulation of high-order harmonic generation (HHG) during the laser-molecule interaction.
View Article and Find Full Text PDFWe studied the multi-plateau high-order harmonic generation (HHG) from solids numerically. It is found that the HHG spectra in the second and higher plateaus are redshifted in short laser pulses due to the nonadiabatic effect. The corresponding FWHMs also increase as a function of the harmonic order, suggesting the step-by-step excitation of higher conduction bands in the HHG process.
View Article and Find Full Text PDFFigure 2Opt. Express25, 151 (2017)] was labeled with wrong tags. Here we publish the revised figure.
View Article and Find Full Text PDFWe investigated the high-order harmonic generation (HHG) process of diatomic molecular ion H in non-Born-Oppenheimer approximations (NBOA). The corresponding three-dimensional time-dependent Schrödinger equation is solved with arbitrary alignment angles. It is found that the nuclear motion can lead to spectral modulation of HHG in both the tunneling and multiphoton ionization regimes.
View Article and Find Full Text PDFWe introduce a quasi-classical model in the k space combined with the energy band structure of solids to understand the mechanisms of high-order harmonic generation (HHG) process occurring in a subcycle timescale. This model interprets the multiple plateau structure in HHG spectra well and the linear dependence of cutoff energies on the amplitude of vector potential A0 of the laser fields. It also predicts the emission time of HHG, which agrees well with the results by solving the time-dependent Schrödinger equation (TDSE).
View Article and Find Full Text PDFWe use differential holography to overcome the forward scattering problem in strong-field photoelectron holography. Our differential holograms of H_{2} and D_{2} molecules exhibit a fishbonelike structure, which arises from the backscattered part of the recolliding photoelectron wave packet. We demonstrate that the backscattering hologram can resolve the different nuclear dynamics between H_{2} and D_{2} with subangstrom spatial and subcycle temporal resolution.
View Article and Find Full Text PDFMolecular high-order harmonic generation (MHOHG) in a non-Born-Oppenheimer treatment of H(2)(+), D(2)(+), is investigated by numerical simulations of the corresponding time-dependent Schrödinger equations in full dimensions. As opposed to previous studies on amplitude modulation of intracycle dynamics in MHOHG, we demonstrate redshifts as frequency modulation (FM) of intercycle dynamics in MHOHG. The FM is induced by nuclear motion using intense laser pulses.
View Article and Find Full Text PDFDynamic imaging of the molecular structure of H(2)(+) is investigated by attosecond photoelectron holography. The interference between direct (reference) and backward rescattered (signal) photoelectrons in attosecond photoelectron holography reveals the birth time of both channels and the spatial information of molecular structure. This is confirmed by simulations with a semiclassical model and numerical solutions of the corresponding time-dependent Schrödinger equation, suggesting an attosecond time-resolved way of imaging molecular structure obtained from laser induced rescattering of ionized electrons.
View Article and Find Full Text PDFMultichannel molecular high-order harmonic generation (MHOHG) from a single electron asymmetric molecular ion HeH2+ is investigated numerically. It is found that considerable resonant excitation occurs by laser induced electron transfer (LIET) to neighboring ions and multiple frequency (fractional-order) harmonics are observed from the excited states shifted by some energy Δ from the main Nω energy harmonics. A time series analysis is used to confirm this MHOHG channel which is created by initial ionization from the excited state prepared by LIET and recombination to the neighboring ion at specific field phases, resulting in interference between recombination pathways from ground and excited states.
View Article and Find Full Text PDF