The support vector machine approach was introduced to predict the beta-turns in proteins. The overall self-consistency rate by the re-substitution test for the training or learning dataset reached 100%. Both the training dataset and independent testing dataset were taken from Chou [J.
View Article and Find Full Text PDFThe support vector machines (SVMs) method was introduced for predicting the structural class of protein domains. The results obtained through the self-consistency test, jack-knife test, and independent dataset test have indicated that the current method and the elegant component-coupled algorithm developed by Chou and co-workers, if effectively complemented with each other, may become a powerful tool for predicting the structural class of protein domains.
View Article and Find Full Text PDFThe support vector machines (SVMs) method is proposed because it can reflect the sequence-coupling effect for a tetrapeptide in not only a beta-turn or non-beta-turn, but also in different types of beta-turn. The results of the model for 6022 tetrapeptides indicate that the rates of self-consistency for beta-turn types I, I', II, II', VI and VIII and non-beta-turns are 99.92%, 96.
View Article and Find Full Text PDFIn this paper, the neural network method was applied to predict the content of protein secondary structure elements that was based on 'pair-coupled amino acid composition', in which the sequence coupling effects are explicitly included through a series of conditional probability elements. The prediction was examined by a self-consistency test and an independent-dataset. Both indicated good results obtained when using the neural network method to predict the contents of alpha-helix, beta-sheet, parallel beta-sheet strand, antiparallel beta-sheet strand, beta-bridge, 3(10)-helix, pi-helix, H-bonded turn, bend, and random coil.
View Article and Find Full Text PDFKnowledge of the polyprotein cleavage sites by HIV protease will refine our understanding of its specificity, and the information thus acquired is useful for designing specific and efficient HIV protease inhibitors. The pace in searching for the proper inhibitors of HIV protease will be greatly expedited if one can find an accurate, robust, and rapid method for predicting the cleavage sites in proteins by HIV protease. In this article, a Support Vector Machine is applied to predict the cleavability of oligopeptides by proteases with multiple and extended specificity subsites.
View Article and Find Full Text PDFIn this paper, we apply a new machine learning method which is called support vector machine to approach the prediction of protein structural class. The support vector machine method is performed based on the database derived from SCOP which is based upon domains of known structure and the evolutionary relationships and the principles that govern their 3D structure. As a result, high rates of both self-consistency and jackknife test are obtained.
View Article and Find Full Text PDFSupport Vector Machines (SVMs) which is one kind of learning machines, was applied to predict the specificity of GalNAc-transferase. The examination for the self-consistency and the jackknife test of the SVMs method were tested for the training dataset (305 oligopeptides), the correct rate of self-consistency and jackknife test reaches 100% and 84.9%, respectively.
View Article and Find Full Text PDFSupport Vector Machine (SVM), which is one class of learning machines, was applied to predict the subcellular location of proteins by incorporating the quasi-sequence-order effect (Chou [2000] Biochem. Biophys. Res.
View Article and Find Full Text PDF