Background: Noninvasive evaluation of the expression of angiopoietin-2 (Ang-2) and transketolase (TKT) in hepatocellular carcinoma (HCC) is of great significance for the clinical development of individualized treatment plans. However, the correlation between intravoxel incoherent motion diffusion weighted imaging (IVIM-DWI) and the expression of Ang-2 and TKT has not been reported. We sought to investigate the correlations between IVIM-DWI parameters and Ang-2 and TKT expression levels in HCCs.
View Article and Find Full Text PDFOwing to its scientific and technological importance, crystallization as a ubiquitous phenomenon has been widely studied over centuries. Well-developed single crystals are generally enclosed by regular flat facets spontaneously to form polyhedral morphologies because of the well-known self-confinement principle for crystal growth. However, in nature, complex single crystalline calcitic skeleton of biological organisms generally has a curved external surface formed by specific interactions between organic moieties and biocompatible minerals.
View Article and Find Full Text PDFSingle-crystalline TiOF(2) crystals with cubical morphology were prepared via a facile solvothermal method and their transformation to anatase TiO(2) under different calcination conditions such as pure argon, moist argon and pure hydrogen sulfide (H(2)S) was explored by using XRD/Raman/UV-Vis/SEM/TEM/SAED. The non-metal sulfur doping was successfully fulfilled and the doped TiO(2) microcubes showed the best photocatalytic H(2) evolution property.
View Article and Find Full Text PDFThe direct addition of various beta-dicarbonyl compounds to a series of secondary alcohols and alkenes has been achieved using 1 mol % perchloric acid (HClO(4)) as the catalyst. The HClO(4)-catalyzed reactions could be conveniently conducted in commercial solvent and gave moderate to excellent yields. Moreover, the silica gel-supported HClO(4) could also catalyze the heterogeneous addition for a series of substrates with similar or even higher yields in comparison with the homogeneous ones.
View Article and Find Full Text PDFStrategies for assembly and analysis of human, yeast, and bacterial RNA polymerase elongation complexes are described, and methods are shown for millisecond phase kinetic analyses of elongation using rapid chemical quench flow. Human, yeast, and bacterial RNA polymerases function very similarly in NTP-Mg2+ commitment and phosphodiester bond formation. A "running start, two-bond, double-quench" protocol is described and its advantages discussed.
View Article and Find Full Text PDFTGFbeta1 plays critical roles in stimulating smooth muscle gene transcription during myofibroblast and smooth muscle cell (SMC) differentiation. Increasing evidence demonstrates that histone modification plays important roles in regulating gene transcription. Here, we investigated the effect of changes in the expression of histone acetyltransferases (HAT) or histone deacetylases (HDAC) on TGFbeta1-induced SM22 promoter activities.
View Article and Find Full Text PDFMulti-subunit RNA polymerases bind nucleotide triphosphate (NTP) substrates in the pretranslocated state and carry the dNMP-NTP base pair into the active site for phosphoryl transfer. NTP-driven translocation requires that NTP substrates enter the main-enzyme channel before loading into the active site. Based on this model, a new view of fidelity and efficiency of RNA synthesis is proposed.
View Article and Find Full Text PDFThe nucleotide triphosphate (NTP)-driven translocation hypothesis posits that NTP substrates bind to templated DNA sites prior to translocation into the active site. By using millisecond phase kinetics, we demonstrate this prediction in three different ways. First, we show that, in the presence of the translocation blocker alpha-amanitin, NTPs (but not deoxynucleotide triphosphate [dNTPs]) templated at downstream sites (i + 2 and i + 3) dislodge an active site (i + 1) NTP, which was otherwise fated to complete bond synthesis.
View Article and Find Full Text PDFOur laboratory has developed methods for transient state kinetic analysis of human RNA polymerase II elongation. In these studies, multiple conformations of the RNA polymerase II elongation complex were revealed by their distinct elongation potential and differing dependence on nucleoside triphosphate substrate. Among these are conformations that appear to correspond to different translocation states of the DNA template and RNA-DNA hybrid.
View Article and Find Full Text PDFWe report a "running start, two-bond" protocol to analyze elongation by human RNA polymerase II (RNAP II). In this procedure, the running start allowed us to measure rapid rates of elongation and provided detailed insight into the RNAP II mechanism. Formation of two bonds was tracked to ensure that at least one translocation event was analyzed.
View Article and Find Full Text PDFDermo-1 is a multifunctional basic helix-loop-helix (bHLH) transcription factor that has been shown to be a potent negative regulator for gene transcription and apoptosis. To understand the molecular mechanisms that mediate the function of Dermo-1, we generated a series of Dermo-1 mutants and used a MyoD-mediated transcriptional activation model to characterize the roles of its N-terminal, bHLH, and C-terminal structural domains in transcriptional repression. Both the C-terminal and HLH domains of Dermo-1 were essential for its repression of MyoD-mediated transactivation.
View Article and Find Full Text PDF