Publications by authors named "Xue Hua Wang"

Article Synopsis
  • Traditional optical tweezers are bulky and require complex microscope systems, but new flat lenses, like metalenses, offer a more compact and efficient solution for trapping tiny objects and measuring forces in research.
  • The study introduces a novel transmissive, polarization-insensitive water-immersion metalens with impressive features, including a numerical aperture of 1.28 and 50% focusing efficiency at 532 nm, achieving strong optical trapping capabilities.
  • The practical experiments demonstrated with this metalens show effective manipulation of micro-objects, surpassing previous technologies, and potentially improving usability and performance in various applications like single-molecule and single-cell studies.
View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on creating agarose hydrogels doped with a compound called AHMT for detecting formaldehyde (FA), offering a reliable system that is easy to use and recyclable.
  • The hydrogels show a linear response to increasing FA concentrations, with a detection limit of 0.013 μg mL, suggesting high sensitivity.
  • The developed system is not only low-cost and straightforward to operate but can also be reused multiple times, making it suitable for food safety monitoring by individuals without specialized skills.
View Article and Find Full Text PDF

Background: Hemolymphangioma is a rare, noninvasive benign tumor that originates from vascular and lymphatic malformations. It is usually congenital and can present with varying symptoms depending on its location and size. There are very few reports of hemolymphangiomas within the spinal canal, and giant lesions are exceptionally rare.

View Article and Find Full Text PDF

Metalenses are typically designed for a fixed focal length, restricting their functionality to static scenarios. Various methods have been introduced to achieve the zoom function in metalenses. These methods, however, have a very limited zoom range, or they require additional lenses to achieve direct imaging.

View Article and Find Full Text PDF

Engineering room-temperature strong coupling of few-exciton in transition-metal dichalcogenides (TMDCs) with plasmons promises to construct compact and high-performance quantum optical devices. But it remains unimplemented due to their in-plane excitons. Here, we demonstrate the strong coupling of few-exciton within 10 in monolayer WS with the plasmonic mode with a large tangential component of the electric field tightly trapped around the sharp corners of an Au@Ag nanocuboid, the fewest number of excitons observed in the TMDC family so far.

View Article and Find Full Text PDF

Background: Diabetic encephalopathy is manifested by cognitive dysfunction. Salidroside, a nature compound isolated from Rhodiola rosea L, has the effects of anti-inflammatory and antioxidant, hypoglycemic and lipid-lowering, improving insulin resistance, inhibiting cell apoptosis, and protecting neurons. However, the mechanism by which salidroside alleviates neuronal degeneration and improves learning and memory impairment in diabetic mice remains unclear.

View Article and Find Full Text PDF

Employing nanostructure to generate large chiroptical response has been cultivated as an emerging field, for its great potentials in integrated optics, biochemistry detections, etc. However, the lack of intuitive approaches for analytically describing the chiroptical nanoparticles has discouraged researchers from effectively designing advanced chiroptical structures. In this work, we take the twisted nanorod dimer system as a basic example to provide an analytical approach from the perspective of mode coupling, including far-field coupling and near-field coupling of nanoparticles.

View Article and Find Full Text PDF

The single-exciton strong coupling with the localized plasmon mode (LPM) at room temperature is highly desirable for exploiting quantum technology. However, its realization has been a very low probability event due to the harsh critical conditions, severely compromising its application. Here, we present a highly efficient approach for achieving such a strong coupling by reducing the critical interaction strength at the exceptional point based upon the damping inhibition and matching of the coupled system, instead of enhancing the coupling strength to overcome the system's large damping.

View Article and Find Full Text PDF

Background: As an extramedullary form of proliferating myeloblasts, granulocytic sarcoma (GS) is common in patients with acute myeloid leukemia. GS in the central nervous system is rare, and an intraspinal space-occupying lesion caused by GS is even rarer. Surgical decompression is often necessary to remove the intraspinal space-occupying lesion.

View Article and Find Full Text PDF

A single quantum dot (QD) strongly coupled with a plasmonic nanoparticle yields a promising qubit for scalable solid-state quantum information processing at room temperature. However, realizing such a strong coupling remains challenging due to the difficulty of spatial overlap of the QD excitons with the plasmonic electric fields (EFs). Here, by using a transmission electron microscope we demonstrate for the first time that this overlap can be realized by integrating a deterministic single QD with a single Au nanorod.

View Article and Find Full Text PDF

Significance: Full-field optical angiography is critical for vascular disease research and clinical diagnosis. Existing methods struggle to improve the temporal and spatial resolutions simultaneously.

Aim: Spatiotemporal absorption fluctuation imaging (ST-AFI) is proposed to achieve dynamic blood flow imaging with high spatial and temporal resolutions.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to investigate the effects of escitalopram on sleep EEG power in patients with Major Depressive Disorder (MDD) by comparing sleep and melatonin levels in MDD patients versus healthy controls.
  • MDD patients showed significant disruptions in melatonin secretion patterns and sleep architecture, including delayed melatonin peaks and altered brain activity, some of which persisted throughout the 8-week study period.
  • After 8 weeks of escitalopram treatment, patients experienced improvements in subjective sleep quality and depressive symptoms, but changes in melatonin rhythm and some sleep parameters remained limited.
View Article and Find Full Text PDF

The semiconductor quantum dot (QD) has been successfully demonstrated as a potentially scalable and on-chip integration technology to generate the triggered photon streams that have many important applications in quantum information science. However, the randomicity of these photon streams emitted from the QD seriously compromises its use and especially hinders the on-demand manipulation of the spin states. Here, by accurately integrating a QD and its mirror image onto the two foci of a bifocal metalens, we demonstrate the on-demand generation and separation of the spin states of the emitted single photons.

View Article and Find Full Text PDF

The progress of metaoptics relies on identifying photonic materials and geometries, the combination of which represents a promising approach to complex and desired optical functionalities. Material candidate options are primarily limited by natural availability. Thus, the search for meta-atom geometries, by either forward or inverse means, plays a pivotal role in achieving more sophisticated phenomena.

View Article and Find Full Text PDF

The colour gamut, a two-dimensional (2D) colour space primarily comprising hue and saturation (HS), lays the most important foundation for the colour display and printing industries. Recently, the metasurface has been considered a promising paradigm for nanoprinting and holographic imaging, demonstrating a subwavelength image resolution, a flat profile, high durability, and multi-functionalities. Much effort has been devoted to broaden the 2D HS plane, also known as the CIE map.

View Article and Find Full Text PDF

Strong coupling between solid-state quantum emitters and microcavities paves the way for optical coherent manipulation of quantum state and provides opportunities for quantum information processing. However, it is still a challenge to realize strong coupling due to the spectral and spatial mismatch between quantum emitters and cavity modes. Here, we propose a scheme to tune the coupling between a single QD and a microdisk with 1D photonic crystal nanobeam cavity.

View Article and Find Full Text PDF

Light-harvesting complexes (LHC) in photosynthetic organisms perform the major function of light absorption and energy transportation. Optical spectrum of LHC provides a detailed understanding of the molecular mechanisms involved in the excitation energy transfer (EET) processes, which has been widely studied. Here, we study how the geometric property of LHC in Rhodospirillum (Rs.

View Article and Find Full Text PDF

We investigate optical second harmonic generation (SHG) from individual self-catalyzed zinc-blende (ZB) GaAs nanowires (NWs), where the polarimetry strongly depends on the NW diameter. We report a direct observation on the SHG induced by surface nonlinear susceptibilities in a single, ultra-thin GaAs NW. By considering the contributions from both optical field and structural discontinuities in our theoretical model, we can well explain the optical SHG polarimetry from NWs with different diameters.

View Article and Find Full Text PDF

Centrosomal proteins have been implicated in the progression of human diseases. CEP131 plays important roles in centrosome duplication and genome stability, but its role in cancers remains largely unknown. Here, we showed that CEP131 expression was increased in hepatocellular carcinoma (HCC), compared to the paracarcinoma tissues, at both mRNA and protein levels.

View Article and Find Full Text PDF

We demonstrate the utility of optical second harmonic generation (SHG) polarimetry to perform structural characterization of self-assembled zinc-blende/wurtzite III-V nanowire heterostructures. By analyzing four anisotropic SHG polarimetric patterns, we distinguish between wurtzite (WZ), zinc-blende (ZB) and ZB/WZ mixing III-V semiconducting crystal structures in nanowire systems. By neglecting the surface contributions and treating the bulk crystal within the quasi-static approximation, we can well explain the optical SHG polarimetry from the NWs with diameter from 200-600 nm.

View Article and Find Full Text PDF

Reaching the quantum optics limit of strong light-matter interactions between a single exciton and a plasmon mode is highly desirable, because it opens up possibilities to explore room-temperature quantum devices operating at the single-photon level. However, two challenges severely hinder the realization of this limit: the integration of single-exciton emitters with plasmonic nanostructures and making the coupling strength at the single-exciton level overcome the large damping of the plasmon mode. Here, we demonstrate that these two hindrances can be overcome by attaching individual J aggregates to single cuboid Au@Ag nanorods.

View Article and Find Full Text PDF

In this paper, we investigate second harmonic generation in a single hexagonal GaAs nanowire. An excellent frequency converter based on this nanowire excited using a femtosecond laser is demonstrated to operate over a range from 730 nm to 1960 nm, which is wider than previously reported ranges for nanowires in the literature. The converter always operates with a high conversion efficiency of ~10 W which is ~10 times higher than that obtained from the surface of bulk GaAs.

View Article and Find Full Text PDF

Nanowire quantum dots (NW-QDs) can be used for future compact and efficient optoelectronic devices. Many efforts have been made to control the QD states by inserting the QDs in doped structures and applying an electric field in a nanowire system. In this paper, we use down-conversion and up-conversion photoluminescence excitations to explore the optical and electronic properties of single quantum dots in GaAs/AlGaAs core-shell nanowires.

View Article and Find Full Text PDF

HEY2, a bHLH transcription factor, has been implicated in the progression of human cancers. Here, we showed that HEY2 expression was markedly increased in HCC, compared with the adjacent nontumorous tissues. High HEY2 expression was closely correlated with tumor multiplicity, tumor differentiation and TNM stage.

View Article and Find Full Text PDF

Plasmonic colour printing has drawn wide attention as a promising candidate for the next-generation colour-printing technology. However, an efficient approach to realize full colour and scalable fabrication is still lacking, which prevents plasmonic colour printing from practical applications. Here we present a scalable and full-colour plasmonic printing approach by combining conjugate twin-phase modulation with a plasmonic broadband absorber.

View Article and Find Full Text PDF