Publications by authors named "Xue Chang"

Accurate identification of cancer cells under complex physiological environments holds great promise for noninvasive diagnosis and personalized medicine. Herein, we developed dual-aptamer-based DNA logic-gated series lamp probes (Apt-SLP) by coupling a DNA cell-classifier (DCC) with a self-powered signal-amplifier (SSA), enabling rapid and sensitive identification of cancer cells in a blood sample. DCC is endowed with two extended-aptamer based modules for recognizing the two cascade cell membrane receptors and serves as a DNA logic gate to pinpoint a particular and narrow subpopulation of cells from a larger population of similar cells.

View Article and Find Full Text PDF
Article Synopsis
  • Aberrant microRNA (miRNA) expression is linked to various cancers, creating the need for effective detection methods for cancer diagnosis and therapy.
  • The study introduces a novel approach by creating cholesterol-DNA micelles attached to amplification products, allowing for efficient signal amplification through a designed nanoprobe (RC-HCR) that detects miRNA levels in living cells.
  • The RC-HCR probe demonstrated high sensitivity (1 fM detection limit), wide quantification range, and selectivity in distinguishing wild-type miR-21 from its variants, showcasing its potential as a powerful tool for early cancer diagnosis.
View Article and Find Full Text PDF

Recent advancements in the food industry have rekindled interest in the safety of food additives, such as sugar substitutes and food pigments. Consequently, the main purpose of this study was to develop models that can more accurately predict the effects of these additives on the human body. In response to this demand, we have created an innovative pancreas islet-on-a-chip system featuring a concentration gradient generator and a perfusable 3D cell culture array.

View Article and Find Full Text PDF

Organ-on-a-chip, an in vitro biomimetic microsystem that enables precise regulation and real-time observation of the cell microenvironment, has the potential to become a powerful platform for recapitulating the real microenvironment of organs in vitro. Microenvironmental factors, such as living cells, three-dimensional (3D) culture, tissue-tissue interfaces, and biomechanical factors, are important cues in the construction of biomimetic microsystems. It is important to provide an appropriate 3D culture environment for living cells to grow.

View Article and Find Full Text PDF

Background: In prior observational investigations, it has been demonstrated that the consumption of milk is associated with the incidence of breast cancer (BC). Despite the existence of a two-sample Mendelian randomization (MR) that suggests a causal relationship between milk intake and breast cancer risk, the outcomes still lack a definitive conclusion. This ambiguity may be attributed to variables such as the variety of milk ingested, estrogen levels, the specific type of BC, and potential confounding factors.

View Article and Find Full Text PDF
Article Synopsis
  • LBR, a shrub native to East Asia, has shown promise as an anticancer and antibacterial agent, though its effectiveness against triple-negative breast cancer (TNBC) was previously unclear.
  • Research found that LBR’s ethanol extract can cause TNBC cell death by halting cell growth, causing S-phase arrest, and triggering apoptosis.
  • RNA sequencing indicated that LBR alters genes related to cell adhesion and inhibits certain cancer-promoting proteins, showing potential as a safe chemotherapeutic option for breast cancer treatment.
View Article and Find Full Text PDF

This study introduces the synthesis and detailed characterization of a novel thermochromic material capable of reversible alterations in its thermotropic transmittance. Through an emulsion polymerization process, this newly developed material is composed of 75-85% octadecyl acrylate and 0-7% allyl methacrylate, demonstrating a pronounced discoloration effect across a narrow yet critical temperature range of 24.5-39 °C.

View Article and Find Full Text PDF

With the increasing global focus on energy efficiency and environmental sustainability, intelligent building materials such as thermochromic glazing have emerged as a hot topic of research. The intent of this paper is to explore the utilization of gel-type thermochromic glazing within the realm of architectural energy conservation calculations. It conducts an exhaustive examination of the material's attributes, its capacity for energy savings, and the obstacles encountered in real-world applications.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses advancements in DNA origami nanotechnology, focusing on a method to create patterned self-assembled nanostructures using rolling circle amplification products (RPs).
  • This new approach simplifies construction by using fewer DNA components, allowing for self-folding into grid-patterned ribbons without the need for numerous staple strands.
  • The resulting DNA framework (FP) can be easily modified for precise placement of nanoparticles and proteins, paving the way for applications in biotechnology, nanomedicine, and other fields requiring precise molecular organization.
View Article and Find Full Text PDF

Astrocytes are multi-functional glial cells in the central nervous system that play critical roles in modulation of metabolism, extracellular ion and neurotransmitter levels, and synaptic plasticity. Astrocyte-derived signaling molecules mediate many of these modulatory functions of astrocytes, including vesicular release of ATP. In the present study, we used a unique genetic mouse model to investigate the functional significance of astrocytic exocytosis of ATP.

View Article and Find Full Text PDF

Viscoelasticity plays a key role in hydrogel design. We designed a physically cross-linked hydrogel with tunable viscoelasticity, comprising supramolecular-assembled peptides coupled to hyaluronan (HA), a native extracellular matrix component. We then explored the structural and molecular mechanisms underlying the mechanical properties of a series of these HA-peptide hydrogels.

View Article and Find Full Text PDF

MicroRNA (miRNA) represents a class of important potential biomarkers, and their intracellular imaging is extremely useful for fundamental research and early diagnosis of human cancers. Hybridization chain reaction (HCR) has been shown to be effective in detecting miRNA in living cells. However, its practical applications are still hampered by inefficient reaction kinetics and poor biological stability under complex intracellular conditions.

View Article and Find Full Text PDF

Choline participates in three major metabolic pathways: oxidation, phosphorylation, and acetylation. Through oxidation, choline is converted to betaine and contributes to methyl metabolism and epigenetic regulation. Through phosphorylation, choline participates in phospholipid metabolism, and serves as the precursor of phosphocholine, phosphatidylcholine, glycerophosphocholine, and other essential compounds, thereby modulating lipid metabolism and transport.

View Article and Find Full Text PDF

Background: High-efficiency and highly reliable analysis of microRNAs (miRNAs) in bodily fluids highlights its significance to be extensively utilized as candidates for non-invasive "liquid biopsy" approaches. DNA biosensors based on strand displacement amplification (SDA) methods have been successfully designed to detect miRNAs given the efficiently amplified and recycled of the target sequences. However, the unpredictable DNA framework and heavy reliance on free diffusion or random reactant collisions in existing approaches lead to delayed reaction kinetics and inadequate amplification.

View Article and Find Full Text PDF

Human stem cell-derived organoids enable both disease modeling and serve as a source of cells for transplantation. Human retinal organoids are particularly important as a source of human photoreceptors; however, the long differentiation period required and lack of vascularization in the organoid often results in a necrotic core and death of inner retinal cells before photoreceptors are fully mature. Manipulating the in vitro environment of differentiating retinal organoids through the incorporation of extracellular matrix components could influence retinal development.

View Article and Find Full Text PDF

Large-scale stretchable strain sensor arrays capable of mapping two-dimensional strain distributions have gained interest for applications as wearable devices and relating to the Internet of Things. However, existing strain sensor arrays are usually unable to achieve accurate directional recognition and experience a trade-off between high sensing resolution and large area detection. Here, based on classical Mie resonance, we report a flexible meta-sensor array that can detect the in-plane direction and magnitude of preloaded strains by referencing a dynamically transmitted terahertz (THz) signal.

View Article and Find Full Text PDF

Objective: This study aims to analyze the clinical effects of combining carbamazepine and amitriptyline in the treatment of diabetic neuropathy with concurrent diabetic foot.

Methods: A total of 120 diabetic neuropathy patients treated at our hospital from June 2022 to November 2023 were included in the study. Patients meeting the inclusion criteria were registered, and their basic data were collected.

View Article and Find Full Text PDF

Flexible actuation materials play a crucial role in biomimetic robots. Seeking methods to enhance actuation and functionality is one of the directions in which actuators strive to meet the high-performance and diverse requirements of environmental conditions. Herein, by utilizing the method of adsorbing N-doped carbon dots (NCDs) onto SiO to form clusters of functional particles, a NCDs@SiO/PDMS elastomer was prepared and its combined optical and electrical co-stimulation properties were effectively harnessed to develop a biomimetic crawling robot resembling (firefly).

View Article and Find Full Text PDF

The objective of this study was to examine the intervention effect of group sensory integration training on social responsiveness, and the latency and amplitude of N170 event-related potential of children with autism. The social responsiveness scale was employed to assess alterations in the social response of individuals with ASD before and after training, while event-related potentials were utilized to measure changes in N170 latency and amplitude. This study revealed that group sensory integration training can significantly enhance social responsiveness in children diagnosed with ASD.

View Article and Find Full Text PDF

Background: The discovery of material transfer between transplanted and host mouse photoreceptors has expanded the possibilities for utilizing transplanted photoreceptors as potential vehicles for delivering therapeutic cargo. However, previous research has not directly explored the capacity for human photoreceptors to engage in material transfer, as human photoreceptor transplantation has primarily been investigated in rodent models of late-stage retinal disease, which lack host photoreceptors.

Methods: In this study, we transplanted human stem-cell derived photoreceptors purified from human retinal organoids at different ontological ages (weeks 10, 14, or 20) into mouse models with intact photoreceptors and assessed transfer of human proteins and organelles to mouse photoreceptors.

View Article and Find Full Text PDF

Accurate identification of single-nucleotide mutations in circulating tumor DNA (ctDNA) is critical for cancer surveillance and cell biology research. However, achieving precise and sensitive detection of ctDNAs in complex physiological environments remains challenging due to their low expression and interference from numerous homologous species. This study introduces single-nucleotide-specific lipidic nanoflares designed for the precise and visible detection of ctDNA via toehold-initiated self-priming DNA polymerization (TPP).

View Article and Find Full Text PDF

VO, which exhibits semiconductor-metal phase transition characteristics occurring on a picosecond time scale, holds great promise for ultrafast terahertz modulation in next-generation communication. However, as of now, there is no reported prototype for an ultrafast device. The temperature effect has been proposed as one of the major obstacles.

View Article and Find Full Text PDF

Engineered biomaterial scaffolds are becoming more prominent in research laboratories to study drug efficacy for oncological applications in vitro, but do they have a place in pharmaceutical drug screening pipelines? The low efficacy of cancer drugs in phase II/III clinical trials suggests that there are critical mechanisms not properly accounted for in the pre-clinical evaluation of drug candidates. Immune cells associated with the tumor may account for some of these failures given recent successes with cancer immunotherapies; however, there are few representative platforms to study immune cells in the context of cancer as traditional 2D culture is typically monocultures and humanized animal models have a weakened immune composition. Biomaterials that replicate tumor microenvironmental cues may provide a more relevant model with greater in vitro complexity.

View Article and Find Full Text PDF

Intelligent DNA nanomachines are powerful and versatile molecular tools for bioimaging and biodiagnostic applications; however, they are generally constrained by complicated synthetic processes and poor reaction efficiencies. In this study, we developed a simple and efficient molecular machine by coupling a self-powered rolling motor with a lipidic nanoflare (termed RMNF), enabling high-contrast, robust, and rapid probing of cancer-associated microRNA (miRNA) in serum and living cells. The lipidic nanoflare is a cholesterol-based lipidic micelle decorated with hairpin-shaped tracks that can be facilely synthesized by stirring in buffered solution, whereas the 3D rolling motor (3D RM) is a rigidified tetrahedral DNA scaffold equipped with four single-stranded "legs" each silenced by a locking strand.

View Article and Find Full Text PDF

Potassium ion batteries (PIBs) have attracted great research interest in new-generation large-scale energy storage considering their abundant source, low cost, and suitable working potential. Herein, a hierarchical TiO/TiC hybrid is developed a green, facile water steam etching method for realizing an efficient and durable anode material for PIBs. In this hierarchical assembly, the TiO nanoparticles anchored on the TiC surface contribute a high pseudocapacitance while mitigating the restacking of the TiC MXene skeleton, which ensures mechanical robustness to accommodate large K ions.

View Article and Find Full Text PDF