Publications by authors named "Xudong Mei"

As integrated circuits have developed towards the direction of complexity and miniaturization, there is an urgent need for low dielectric constant materials to effectively realize high-fidelity signal transmission. However, there remains a challenge to achieve ultralow dielectric constant and ultralow dielectric loss over a wide temperature range, not to mention having excellent thermal conductivity and processability concurrently. We herein prepare dual-linker freestanding covalent organic framework films with tailorable fluorine content via interfacial polymerization.

View Article and Find Full Text PDF

With the swift advancement of the global digital economy, data has emerged as a critical component in fostering the integration of large enterprises with small and medium-sized enterprises (SMEs). Nevertheless, due to disparities in resources and capabilities between these entities, there is a deficiency in the willingness to share data, hindering the full actualization of data's potential value. Hence, it is imperative to facilitate a novel cooperative development paradigm wherein platforms enable data sharing among large enterprises and SMEs.

View Article and Find Full Text PDF

Waste oil-based drill cuttings contain dioxins and volatile organic compounds (VOCs), which have the potential to cause serious health effects in humans. Therefore, this paper took oil-based drill cuttings (OBDCs) as the research object and carried out the testing of VOCs and dioxins content by using GC-MS and HRGCS-HRMS and comprehensively evaluated the content, composition and distribution pattern of VOCs and dioxins and the risk to human health posed by the two pollutants in OBDCs. The results showed that the VOCs did not exceed the emission limits in ESPPI (GB 31571-2015), but it is vital to recognise that 1,2-dichloropropane has the potential to cause cancer risk, with soil and groundwater risk control values of 662.

View Article and Find Full Text PDF

With the rapid development of integrated circuits towards miniaturization and complexity, there is an urgent need for materials with low dielectric constant/loss and high processing temperatures to effectively prevent signal delay and crosstalk. With high porosity, thermal stability, and easy structural modulation, covalent organic frameworks have great potential in the field of low dielectric materials. However, the optimization of dielectric properties by modulating the conjugated/plane curvature structure of covalent organic frameworks (COFs) has rarely been reported.

View Article and Find Full Text PDF

The resource disposal of electrolytic manganese residue can effectively solve the problem of environmental pollution caused by it, among which the problem of heavy metal pollution is the most prominent. In this study, a new type of eco-friendly brick mixed with electrolytic manganese residue was designed. The influence of the content of electrolytic manganese residue on its macroscopic properties, microscopic properties, and leaching characteristics was analyzed by test methods such as compressive strength test, radioactivity test, XRF, XRD, FTIR, and ICP test of bricks.

View Article and Find Full Text PDF

A large amount of shale gas fracturing flowback fluid (FFBF) from the process of shale gas exploitation causes obvious ecological harm to health of soil and water. However, biological hazard of soil microbial populations by fracturing flowback fluid remains rarely reported. In this study, the microbiological compositions were assessed via analyzing diversity of microbial populations.

View Article and Find Full Text PDF

The feasibility of coordinated use of water-based drilling cuttings (WDC), fly ash, and phosphogypsum (PG) as raw materials for the preparation of WDC non-autoclaved aerated concrete (WNAAC) was evaluated by laboratory experiment. The results showed that the pozzolanic reaction of the multi-component cementitious system containing 40% (in mass) of WDC is significantly promoted. Newly formed C-S-H gel and ettringite with the uniform distribution of fibrous and flake-like shape occur, presenting a denser and interlock microstructure.

View Article and Find Full Text PDF

Phosphogypsum (PG) accumulation occupies huge amounts of land resources and results in serious environmental risks. A new recycling product, the phosphogypsum embedded filler (PGEF) made with calcination-modified phosphogypsum, was developed. The preparation process, hydration mechanism of PG, basic physical performances, environmental safety, engineering application, and cost analysis of the PGEF were studied.

View Article and Find Full Text PDF

The exploration and production of shale gas technology provides a way for utilization of clean fuels. However, during the exploration process of shale gas, enormous amount of drilling cutting was generated and had to be solidified and landfilled. So the accumulation of shale gas drilling cutting solidified body (SGDS)causes severe land resource misuse and environmental complications.

View Article and Find Full Text PDF

The overall objective of this research project was to investigate the heavy metals environmental security control of resource utilization of shale gas' drilling cuttings. To achieve this objective, we got through theoretical calculation and testing, ultimately and preliminarily determine the content of heavy metals pollutants, and compared with related standards at domestically and abroad. The results indicated that using the second Fike's law, the theoretical model of the release amount of heavy metal can be made, and the groundwater environmental risk as main point compared with soil.

View Article and Find Full Text PDF

Based on the requirement of national energy conservation and environmental protection, attention has been given to building an environment-friendly and resource-saving society. Shale gas oil-based drilling cutting pyrolysis residues (ODPRs) have been used as the main research object to developing new technology which can convert the residues into a harmless and recyclable material. Using the test data of ODPR, we analyze the development prospect in the building material industry and provide a scheme to utilize this particular solid-waste efficiently.

View Article and Find Full Text PDF