Publications by authors named "Xudong Hou"

The global diversity of Proterozoic eukaryote fossils is poorly quantified despite its fundamental importance to the understanding of macroevolutionary patterns and dynamics on the early Earth. Here we report a new construction of fossil eukaryote diversity from the Paleoproterozoic to early Cambrian based on a comprehensive data compilation and quantitative analyses. The resulting taxonomic richness curve verifies Cryogenian glaciations as a major divide that separates the "Boring Billion" and Ediacaran periods, with the former characterized by a prolonged stasis, and the latter by greater diversity, more-rapid turnover, and multiple radiations and extinctions.

View Article and Find Full Text PDF

Among the complications of diabetes, diabetic kidney disease (DKD) frequently emerges, typified by the detrimental effects on renal function, manifesting through inflammation, dysregulated lipid metabolism, and harm to podocytes. Existing research underscores the significance of the soluble form of C-X-C chemokine ligand 16 (CXCL16) within the context of renal impairments. However, whether CXCL16 is involved in the pathogenesis of DKD remains elusive.

View Article and Find Full Text PDF

High-spin organic radicals are notable for their unique optical, electronic, and magnetic properties, but synthesizing stable high-spin systems is challenging due to their inherent reactivity. This study presents a novel strategy for designing stable high-spin polycyclic hydrocarbons (PHs) by incorporating allylic radical into fused aromatic benzenoid rings. To enhance stability, large steric hindrance groups with a synergistic captodative effect were added to the allylic radical centers.

View Article and Find Full Text PDF

We report a robust strategy for tuning the electronic structure and chemical stability of π-conjugated polycyclic hydrocarbons (PHs). By fusing two cyclopentadienyl rings in the peri-tetracene bay regions, we introduce antiaromatic character into the π-system, leading to unique photophysical and electronic properties. A stable mesityl-substituted dicyclopenta-peri-tetracene derivative was synthesized through stepwise formylation/intramolecular cyclization at the bay regions of the dihydro peri-tetracene precursor, followed by oxidative dehydrogenation.

View Article and Find Full Text PDF

Soft pneumatic actuators/robotics have received significant interest in the medical and health fields, due to their intrinsic elasticity and simple control strategies for enabling desired interactions. However, current soft hand pneumatic exoskeletons often exhibit uniform deformation, mismatch the profile of the interacting objects, and seldom quantify the assistive effects during activities of daily life (ADL), such as extension angle and predicted joint stiffness. The lack of quantification poses challenges to the effective and sustainable advancement of rehabilitation technology.

View Article and Find Full Text PDF
Article Synopsis
  • The study discusses the synthesis of fully π-conjugated macrocycle 1 and bismacrocycle 2, which incorporate quinoidal units to affect their electronic properties.
  • Both compounds exhibit planar geometries and their different oxidation states lead to varying aromatic and anti-aromatic behaviors based on their electron conjugation pathways.
  • NMR analyses provide insights into their dynamic properties, highlighting restricted ring flipping in the phenyl rings, while X-ray crystallography supports their structural similarities to benzene and naphthalene.
View Article and Find Full Text PDF

Human pancreatic lipase (hPL) is a vital digestive enzyme responsible for breaking down dietary fats in humans, inhibiting hPL is a feasible strategy for preventing and treating obesity. This study aims to investigate the structure-activity relationships (SARs) of flavonoids as hPL inhibitors, and to find potent hPL inhibitors from natural and synthetic flavonoids. In this work, the anti-hPL effects of forty-nine structurally diverse naturally occurring flavonoids were assessed and the SARs were summarized.

View Article and Find Full Text PDF
Article Synopsis
  • The synthesis of high-spin organic polymers is challenging due to the instability of organic radicals, particularly when they are magnetically linked.
  • This study introduces a method using a stable fluorenyl radical for creating these polymers, connected by -triazine to enable ferromagnetic coupling.
  • The research successfully demonstrates ferromagnetic interactions in the resulting high-spin polymers after oxidation, marking a significant breakthrough in the field.
View Article and Find Full Text PDF

Gut microbial β-glucuronidases (gmβ-GUS) played crucial roles in regulating a variety of endogenous substances and xenobiotics on the circulating level, thus had been recognized as key modulators of drug toxicity and human diseases. Inhibition or inactivation of gmβ-GUS enzymes has become a promising therapeutic strategy to alleviate drug-induced intestinal toxicity. Herein, the Rhodiola crenulata extract (RCE) was found with potent and broad-spectrum inhibition on multiple gmβ-GUS enzymes.

View Article and Find Full Text PDF

Expanded azahelicenes, as heteroanalogues of helically chiral helicenes, hold significant potential for chiroptical materials. Nevertheless, their investigation and research have remained largely unexplored. Herein, we present the facile synthesis of a series of expanded azahelicenes NHn (n=1-5) consisting of 11, 19, 27, 35, and 43 fused rings, mainly by Suzuki coupling followed by Bi(OTf)-mediated cyclization of vinyl ethers.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on a stable [10]cyclo-para-phenylmethine derivative (compound 1), analogous to [10]annulene, which allows for exploration of its conformations, electronic properties, and aromaticity.
  • - Compound 1 can easily be oxidized into several cations, each exhibiting unique conformations: a nearly planar rectangular structure for both 1 and its tetracation, while the radical cation shows a twisted configuration.
  • - Experimental and theoretical results reveal that 1 has localized aromaticity, while its dications (1a and 1b) display weak Möbius aromaticity and Hückel antiaromaticity, respectively; the tetracation shows
View Article and Find Full Text PDF

The study of through-space electronic coupling in π-conjugated systems remains an underexplored area. In this work, we present the facile synthesis of two isomeric macrocycles (1 and 2) bridged by [2,2]paracyclophane (pCp) and based on thiophene. The structures of these macrocycles have been confirmed through X-ray crystallographic analysis.

View Article and Find Full Text PDF

Spike-receptor interaction is a critical determinant for the host range of coronaviruses. In this study, we investigated the SARS-CoV-2 WHU01 strain and five WHO-designated SARS-CoV-2 variants of concern (VOCs), including Alpha, Beta, Gamma, Delta, and the early Omicron variant, for their Spike interactions with ACE2 proteins of 18 animal species. First, the receptor-binding domains (RBDs) of Alpha, Beta, Gamma, and Omicron were found to display progressive gain of affinity to mouse ACE2.

View Article and Find Full Text PDF

Polycyclic aromatic hydrocarbons (PAHs) with a one-dimensional (1D), ribbon-like structure have the potential to serve as both model compounds for corresponding graphene nanoribbons (GNRs) and as materials for optoelectronics applications. However, synthesizing molecules of this type with extended π-conjugation presents a significant challenge. In this study, we present a straightforward synthetic method for a series of bis-peri-dinaphtho-rylene molecules, wherein the peri-positions of perylene, quaterrylene, and hexarylene are fused with naphtho-units.

View Article and Find Full Text PDF

Obesity has been recognized as a key risk factor for multiple metabolic disorders, including diabetes, cardiovascular diseases and many types of cancer. Herbal medicines have been frequently used for preventing and treating obesity in many countries, but in most cases, the key anti-obesity constituents in herbs and their anti-obesity mechanisms are poorly understood. This study demonstrated a case study for uncovering the anti-obesity constituents in an anti-obesity herbal medicine (Ginkgo biloba extract) and deciphering their synergistic effects via targeting human pancreatic lipase (hPL).

View Article and Find Full Text PDF

Fenofibrate, a marketed peroxisome proliferator-activated receptor- (PPAR) agonist, has been widely used for treating severe hypertriglyceridemia and mixed dyslipidemia. As a canonical prodrug, fenofibrate can be rapidly hydrolyzed to release the active metabolite (fenofibric acid) in vivo, but the crucial enzyme(s) responsible for fenofibrate hydrolysis and the related hydrolytic kinetics have not been well-investigated. This study aimed to assign the key organs and crucial enzymes involved in fenofibrate hydrolysis in humans, as well as reveal the impact of fenofibrate hydrolysis on its non-PPAR-mediated biologic activities.

View Article and Find Full Text PDF

Obesity is a growing global health problem and is associated with increased prevalence of many metabolic disorders, including diabetes, hypertension and cardiovascular disease. Pancreatic lipase (PL) has been validated as a key target for developing anti-obesity agents, owing to its crucial role in lipid digestion and absorption. In the past few decades, porcine PL (pPL) is always used as the enzyme source for screening PL inhibitors, which generate numerous pPL inhibitors but the potent inhibitors against human PL (hPL) are rarely reported.

View Article and Find Full Text PDF

Polycyclic hydrocarbons consisting of two or more directly fused antiaromatic subunits are rare due to their high reactivity. However, it is important to understand how the interactions between the antiaromatic subunits influence the electronic properties of the fused structure. Herein, we present the synthesis of two fused indacene dimer isomers: s-indaceno[2,1-a]-s-indacene (s-ID) and as-indaceno[3,2-b]-as-indacene (as-ID), containing two fused antiaromatic s-indacene or as-indacene units, respectively.

View Article and Find Full Text PDF

Circumacenes (CAs) are a distinctive type of benzenoid polycyclic aromatic hydrocarbons where an acene unit is completely enclosed by a layer of outer fused benzene rings. Despite their unique structures, the synthesis of CAs is challenging, and until recently, the largest CA molecule synthesized was circumanthracene. In this study, we report the successful synthesis of an extended circumpentacene derivative 1, which represents the largest CA molecule synthesized to date.

View Article and Find Full Text PDF

Background: This retrospective study aimed to compare the short- and long-term surgical outcomes of laparoscopic surgery versus open surgery in elderly patients with rectal cancer.

Patients And Methods: Elderly patients (≥70 years old) with rectal cancer who received radical surgery were retrospectively analysed. Patients were matched (1:1 ratio) using propensity score matching (PSM), with age, sex, body mass index, American Society of Anesthesiologists score and tumour-node-metastasis staging included as covariates.

View Article and Find Full Text PDF

The research on aromaticity has mainly focused on monocyclic [n]annulene-like systems or polycyclic aromatic hydrocarbons. For fully π-conjugated multicyclic macrocycles (MMCs), the electronic coupling between the individual constitutional macrocycles would lead to unique electronic structures and aromaticity. The studies on MMCs, however, are quite limited, presumably due to the great challenges to design and synthesize a fully π-conjugated MMC molecule.

View Article and Find Full Text PDF

Large graphene-like molecules with four zigzag edges are ideal gain medium materials for organic near-infrared (NIR) lasers. However, synthesizing them becomes increasingly challenging as the molecular size increases. In this study, we introduce a new intramolecular radical-radical coupling approach and successfully synthesize two fused triangulene dimers (1 a/1 b) efficiently.

View Article and Find Full Text PDF

Obesity, now widespread all over the world, is frequently associated with several chronic diseases. Human pancreatic lipase (hPL) is a crucial digestive enzyme responsible for the digestion of dietary lipids in humans, and the inhibition of hPL is effective in reducing triglyceride intake and thus preventing and treating obesity. In this work, a practical sequential screening strategy was developed to construct a highly selective near-infrared fluorogenic substrate 7-STCFC for hPL.

View Article and Find Full Text PDF

Chiral shape-persistent molecular nanocarbons are promising chiroptical materials; their synthesis, however, remains a big challenge. Herein, we report the facile synthesis and chiral resolution of a double-stranded figure-eight carbon nanobelt 1 in which two [5]helicene units are fused together. Two synthetic routes were developed, and, in particular, a strategy involving Suzuki coupling-mediated macrocyclization followed by Bi(OTf) -catalyzed cyclization of vinyl ether turned out to be the most efficient.

View Article and Find Full Text PDF

Circumcoronene, a hexagonal graphene fragment with six zigzag edges, has been the focus of theoretical studies for many years, but its synthesis in solution has remained a challenge. In this study, we present a facile method for synthesizing three derivatives of circumcoronene using Brønsted/Lewis acid-mediated cyclization of vinyl ether or alkyne. Their structures were confirmed through X-ray crystallographic analysis.

View Article and Find Full Text PDF