Accurate prediction of the protein-ligand binding affinity (PLBA) with an affordable cost is one of the ultimate goals in the field of structure-based drug design (SBDD), as well as a great challenge in the computational and theoretical chemistry. Herein, we have systematically addressed the complicated solvation and desolvation effects on the PLBA brought by the difference of the explicit water in the protein cavity before and after ligands bind to the protein-binding site. Based on the new solvation model, a nonfitting method at the first-principles level for the PLBA prediction was developed by taking the bridging and displaced water (BDW) molecules into account simultaneously.
View Article and Find Full Text PDFWith a resurgence of covalent drugs, there is an urgent need for the identification of new moieties capable of cysteine bond formation. Herein, we report on the -acylamino saccharin moieties capable of novel covalent reactions with cysteine. Their utility as alternative electrophilic warheads was demonstrated through the covalent modification of fructose-1,6-bisphosphatase (FBPase), a promising target associated with cancer and type 2 diabetes.
View Article and Find Full Text PDF