Publications by authors named "Xuanze Fan"

In conjunction with the accelerated evolution of robotics, the advancement of robot-assisted minimally invasive surgical systems is occurring at a similarly accelerated pace, and is becoming increasingly accepted. It is employed in numerous surgical specialties, including orthopedics, and has significantly transformed traditional surgical techniques. Among these applications, knee arthroplasty represents one of the most prevalent and efficacious procedures within the domain of robot-assisted orthopedic surgery.

View Article and Find Full Text PDF

The addition of microstructures to the inner surface of the stent reduces resistance and inhibits the phenomenon of blood adhesion. In this study, the design of a fish-scale microstructured vascular stent was proposed based on bionics, and its main design parameters were optimized using the finite element method. In addition, the hemodynamic effects of a standard stent and a fish-scale microstructured stent on an ideal cerebral aneurysm were comparatively analyzed.

View Article and Find Full Text PDF

The prevention, control and treatment of cerebral aneurysm (CA) has become a common concern of human society, and by simulating the biomechanical environment of CA using finite element analysis (FEA), the risk of aneurysm rupture can be predicted and evaluated. The target models of the current study are mainly idealized single-layer linear elastic cerebral aneurysm models, which do not take into account the effects of the vessel wall structure, material constitution, and structure of the real CA model on the mechanical parameters. This study proposes a reconstruction method for patient-specific trilaminar CA structural modeling.

View Article and Find Full Text PDF
Article Synopsis
  • * This study models the complete osteochondral unit with poroelastic materials, revealing that as osteoarthritis progresses, alterations in the size and shape of defects impact fluid flow behavior, potentially affecting injury progression.
  • * Findings indicate that larger and thicker defects lead to decreased interstitial fluid pressure and velocity, with nutrient loss occurring as the osteochondral unit becomes more permeable, contributing to the understanding of fluid flow mechanisms in osteoarthritis.
View Article and Find Full Text PDF

Problems, such as broken screws, broken rods, and cage subsidence after clinical spinal fusion surgery affect the success rate of fusion surgery and the fixation effect of fusion segments, and these problems still affect the treatment and postoperative recovery of patients. In this study, we used the biomechanical finite element analysis method to analyze and study the fixation effect of three kinds of spinal internal fixation systems on L4-L5 lumbar spine segments in percutaneous endoscopic posterior lumbar interbody fusion (PE-PLIF). The three different fixation systems compared in this study include bilateral pedicle screw fixation (M1); bilateral pedicle screw with cross-link fixation (M2); bilateral pedicle screws with double bent rods fixation (M3).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7rtk4t2o8oc8fi675qlnm286gc86pvjn): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once