Publications by authors named "Xuanyu Zhu"

To improve the happiness of the older adults enjoying digital public services, this study examines the structural relationship among self-perception of aging, subjective well-being, technology anxiety, self-efficacy, perceived usefulness, and intention to use digital public services for older adults in the context of digital public services. We employ Structural Equation Modeling (SEM) for empirical analysis (N = 345, February to October 2023). The negative self-perception of aging may lead to the negative emotions of older adults on technology, which will reduce subjective well-being and increase technology anxiety.

View Article and Find Full Text PDF

As the landscape of information storage and security continues to evolve, the deployment of sophisticated anticounterfeiting strategies with robust security features and multimodal luminescent capabilities becomes imperative. In this work, Eu and Er ions are codoped into CaF phosphors to achieve multimodel optical output. The self-reduction of Eu within the CaF matrix gives rise to the coexistence of Eu and Eu ions, which manifests as a color transition from orange to blue as the excitation wavelength is varied from 300 to 335 nm.

View Article and Find Full Text PDF

Developing a molecular-level understanding of the properties of water is central to numerous scientific and technological applications. However, accurately modeling water through computer simulations has been a significant challenge due to the complex nature of the hydrogen-bonding network that water molecules form under different thermodynamic conditions. This complexity has led to over five decades of research and many modeling attempts.

View Article and Find Full Text PDF

Cryogenic detection technology is essential to ensure safety and effectiveness in fields such as medical refrigeration, cold chain transport, and cryogenic bioengineering. In this paper, a time-responsive visual cryogenic detection strategy is developed based on the storage properties of CaZnOS: Pb, Pr phosphors with shallow traps. Since the carrier release rate from the trap center receives the influence of ambient temperature and storage time, the storage time of the temperature-sensitive product can be determined by the different optical signals of CaZnOS: Pb, Pr phosphors obtained under 980 nm laser irradiation.

View Article and Find Full Text PDF

Deciphering the composition of the tumor microenvironment (TME) is critical for understanding tumorigenesis and to design immunotherapies. In the present study, we mapped genetic effects on cell-type proportions using single-cell and bulk RNA sequencing data, identifying 3,494 immunity quantitative trait loci (immunQTLs) across 23 cancer types from The Cancer Genome Atlas. Functional annotation revealed regulatory potential and we further assigned 1,668 genes that regulate TME composition.

View Article and Find Full Text PDF

Low-temperature anticounterfeiting technologies play a crucial role in ensuring the authenticity and integrity of temperature-sensitive products such as vaccines, pharmaceuticals, and food items. In this work, a low-temperature anticounterfeiting route based on the differentiated photoluminescence (PL), PersL, and thermally stimulated luminescence (TSL) behaviors of metal halide perovskite, pure CsCdCl, and CsCdCl:10% Te is proposed. The CsCdCl host exhibits pronounced color shifts, encompassing PL, PersL, and TSL behaviors, ranging from blue to yellow and orange as the temperature rises from 100 K to room temperature.

View Article and Find Full Text PDF

Inorganic materials doped with chromium (Cr) ions generate remarkable and adjustable broadband near-infrared (NIR) light, offering promising applications in the fields of imaging and night vision technology. However, achieving high efficiency and thermal stability in these broadband NIR phosphors poses a significant challenge for their practical application. Here, we employ crystal field engineering to modulate the NIR characteristics of Cr-doped GdGaO (GGG).

View Article and Find Full Text PDF

Optical signals with distinctive properties, such as contactless, fast response, and high identification, are harnessed to realize advanced anti-counterfeiting. However, the simultaneous attainment of multi-color, -temporal, and -modal luminescence performance remains a compelling and imperative pursuit. In our work, a temperature/photon-responded dynamic self-activated luminescence originating from nonstoichiometric ZnGeO is developed with the modulation of intrinsic defects.

View Article and Find Full Text PDF

CsCuI nanocrystals (NCs) are considered to be promising materials due to their high photoluminescence efficiency, lack of lead toxicity, and X-ray responsiveness. However, during the crystallization process, NCs are prone to agglomeration and exhibit uneven size distribution, resulting in several light scattering that severely affect their imaging resolution. Herein, we successfully developed a high-resolution scintillator film by growing copper-based perovskite NCs within a hybrid polymer matrix.

View Article and Find Full Text PDF

Family has a significant impact on individual mental health. Based on social support theory, family system theory and the Mental Health Continuum Short Form (MHC-SF), this research constructed a model of the pathway of perceived family support on psychological well-being and the results empirically clarified that perceived family support has a significant positive relationship with emotional well-being, social well-being, and psychological well-being (P < 0.001).

View Article and Find Full Text PDF

X-ray radiation information storage, characterized by its ability to detect radiation with delayed readings, shows great promise in enabling reliable and readily accessible X-ray imaging and dosimetry in situations where conventional detectors may not be feasible. However, the lack of specific strategies to enhance the memory capability dramatically hampers its further development. Here, we present an effective anion substitution strategy to enhance the storage capability of NaLuF:Tb nanocrystals attributed to the increased concentration of trapping centers under X-ray irradiation.

View Article and Find Full Text PDF

The propargylic dialkyl effect (PDAE) has a significant impact on the cyclization reaction of enynes, partly reflected in changing the types of products. Herein, we described the influence of the propargylic dialkyl effect on the Ir(III)-catalyzed cycloisomerization of 1,6-enynes to provide strained cyclobutenes. A series of substituted 1,6-enynes were proved to be excellent substrate candidates in the presence of [Cp*IrCl] in toluene.

View Article and Find Full Text PDF

The visualized dual-modal stress-temperature sensing refers to the ability of a sensor to provide real-time and visible information about both stress and temperature and has indeed attracted significant interest in various fields. However, the development of convenient methods for achieving this capability remains a challenge. In this work, a dual-modal stress-temperature sensor is successfully fabricated using a ZnS/Cu@CsPbBrI glass ceramics (GCs)/polydimethylsiloxane (PDMS) (ZCP) composite film.

View Article and Find Full Text PDF

Persistent luminescence (PersL) materials exhibit thermal-favored optical behavior, enabling their unique applications in security night vision signage, in vivo bioimaging, and optical anti-counterfeiting. Therefore, developing efficient and color-tunable PersL materials is significantly crucial in promoting advanced practical use. In this study, hexagonal Zr -doped CsCdCl perovskite is synthesized via a hydrothermal reaction with a tunable photoluminescent (PL) behavior through heterovalent substitution.

View Article and Find Full Text PDF

The current optical anticounterfeit strategies that rely on multimode luminescence in response to the photon or thermal stimuli have significant importance in the field of anticounterfeiting and information encryption. However, the dependence on light and heat sources might limit their flexibility in practical applications. In this work, Er single-doped CaF phosphors that show multistimuli-responsive luminescence have been successfully prepared.

View Article and Find Full Text PDF

We present herein a pyridinium-masked enol as a versatile platform to produce ketones bearing tri-, di-, and monofluoromethyl in the presence of [Ir(dF(Me)ppy)](dtbbpy)]PF under blue light (455 nm) irradiation. By simply changing the F-source, α-trifluoromethyl ketones, α-difluoromethyl ketones, and α-monofluoromethyl ketones could be easily prepared in moderate to excellent yields in one step, making it a practical tool for the synthesis of fluorine-containing ketones. In addition, the pyridinium-masked enol could also be extended to the synthesis of sulfonyl ketones.

View Article and Find Full Text PDF

Many-Body eXpansion (MBX) is a C++ library that implements many-body potential energy functions (PEFs) within the "many-body energy" (MB-nrg) formalism. MB-nrg PEFs integrate an underlying polarizable model with explicit machine-learned representations of many-body interactions to achieve chemical accuracy from the gas to the condensed phases. MBX can be employed either as a stand-alone package or as an energy/force engine that can be integrated with generic software for molecular dynamics and Monte Carlo simulations.

View Article and Find Full Text PDF

We use the MB-pol theoretical/computational framework to introduce a new family of data-driven many-body potential energy functions (PEFs) for water, named MB-pol(2023). By employing larger 2-body and 3-body training sets, including an explicit machine-learned representation of 4-body energies, and adopting more sophisticated machine-learned representations of 2-body and 3-body energies, we demonstrate that the MB-pol(2023) PEFs achieve sub-chemical accuracy in modeling the energetics of the hexamer isomers, outperforming both the original MB-pol and q-AQUA PEFs, which currently provide the most accurate description of water clusters in the gas phase. Importantly, the MB-pol(2023) PEFs provide remarkable agreement with the experimental results for various properties of liquid water, improving upon the original MB-pol PEF and effectively closing the gap with experimental measurements.

View Article and Find Full Text PDF

Complex and high-security-level anti-counterfeiting strategies with multiple luminescent modes are extremely critical for meeting the requirement of constantly developing information storage and information security. In this work, Tb ions doped SrYGeO (SYGO) and Tb/Er co-doped SYGO phosphors are successfully fabricated and are unitized for anti-counterfeiting and information encoding under distinct stimuli sources. The green photoluminescence (PL), long persistent luminescence (LPL), mechano-luminescence (ML), and photo-stimulated luminescence (PSL) behaviors are respectively observed under the stimuli of ultraviolet (UV), thermal disturbance, stress, and 980 nm diode laser.

View Article and Find Full Text PDF

Ion-water interactions play a central role in determining the properties of aqueous systems in a wide range of environments. However, a quantitative understanding of how the hydration properties of ions evolve from small aqueous clusters to bulk solutions and interfaces remains elusive. Here, we introduce the second generation of data-driven many-body energy (MB-nrg) potential energy functions (PEFs) representing bromide-water and iodide-water interactions.

View Article and Find Full Text PDF

Introduction: Background field removal (BFR) is a critical step required for successful quantitative susceptibility mapping (QSM). However, eliminating the background field in brains containing significant susceptibility sources, such as intracranial hemorrhages, is challenging due to the relatively large scale of the field induced by these pathological susceptibility sources.

Method: This study proposes a new deep learning-based method, BFRnet, to remove the background field in healthy and hemorrhagic subjects.

View Article and Find Full Text PDF

Cellular metabolic reprogramming driven by oncogenic mutations is considered as a hallmark in the development of malignant cells, and has been a focus over the past decade. A common theme emerging from these metabolic alterations is that tumor cells can acquire necessary nutrients from a nutrient-limited microenvironment and utilize them to sustain growth and unrestrained cellular division. However, this significant metabolic flexibility and the hostile microenvironment caused by the insufficient vascular exchange, depletion of nutrients, hypoxia, and accumulation of waste products, can inhibit the metabolism and immune activity of tumor-infiltrating lymphocytes and impose barriers to effective antitumor immunotherapies.

View Article and Find Full Text PDF

In recent years, an increasingly more in depth understanding of tumor metabolism in tumorigenesis, tumor growth, metastasis, and prognosis has been achieved. The broad heterogeneity in tumor tissue is the critical factor affecting the outcome of tumor treatment. Metabolic heterogeneity is not only found in tumor cells but also in their surrounding immune and stromal cells; for example, many suppressor cells, such as tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), and tumor-associated T-lymphocytes.

View Article and Find Full Text PDF

Oral squamous cell carcinoma (OSCC) is a malignant tumour originating from the mucosal lining of the oral cavity. Its characteristics include hidden onset, high recurrence, and distant metastasis after operation. At present, clinical treatment usually includes surgery, chemotherapy, radiotherapy, or the joint use of these modalities.

View Article and Find Full Text PDF

Purpose: In recent years, cone-beam computed tomography (CBCT) is increasingly used in adaptive radiation therapy (ART). However, compared with planning computed tomography (PCT), CBCT image has much more noise and imaging artifacts. Therefore, it is necessary to improve the image quality and HU accuracy of CBCT.

View Article and Find Full Text PDF