Publications by authors named "Xuanying Hu"

Supercapacitors (SCs) have emerged as an efficient technology toward the utilization of renewable energy, which demands high-performance electrode materials. Transition-metal sulfides (TMSs) and layered double hydroxides (LDHs) rich in active sites and valence states are very promising electrode materials, but they still suffer from inherent defects, such as low electric conductivity, sluggish reaction kinetics and large volume change during electrochemical reactions. In this work, NiMn-LDH nanosheets are assembled on the surfaces of ZnCoS hollow nanosheet arrays derived from a zeolitic imidazolate framework-L (ZIF-L) to form a ZnCoS@NiMn-LDH heterostructure (ZCS@LDH) with a built-in electric field.

View Article and Find Full Text PDF

Layered double hydroxide (LDH) is widely explored in supercapacitors on account of its high capacity, adjustable composition and easy synthesis process. Unfortunately, solitary LDH still has great limitations as an electrode material due to its shortcomings, such as poor conductivity and easy agglomeration. Herein, nanoflakes assembled NiCo-LDH hollow nanocages derived from a metal-organic framework (MOF) precursor are strung by CuO nanorods formed from etching and oxidation of copper foam (CF), forming hierarchical CuO@NiCo-LDH heterostructures.

View Article and Find Full Text PDF

Transition metal sulfides have been widely explored as electrode materials for supercapacitors. Unfortunately, the slow redox reaction kinetics and severe volume changes during charge/discharge result in compromised electrochemical performance. In this work, a nickel-cobalt sulfide hollow nanosheet array decorated with cerium oxide nanoparticles (NiCoS/CeO) has been constructed using a cobalt zeolitic imidazolate framework-L as the template coupled with subsequent solvothermal synthesis.

View Article and Find Full Text PDF