Lithium sulfur batteries (LSBs) have been considered as one of the most promising options for next generation high-performance batteries. However, the heavy shuttle effect and inferior redox conversion during the charge/discharge processes of the batteries have greatly hindered their further applications. In this study, to address these disadvantages of LSBs, Fe/FeC/FeN heterostructured nanocubes were designed and prepared through high temperature carbonization process using Prussian blue precursor.
View Article and Find Full Text PDFLithium-sulfur batteries (LSBs) have aroused great research interest due to their high theoretical capacity and high energy density. To further develop lithium-sulfur batteries, it has become more and more important to put more efforts in promoting the adsorption and rapid catalytic conversion of lithium polysulfides (LiPSs). Herein, Ni/Co bimetallic phosphides were encapsulated into nitrogen-doped dual carbon conductive network (NiCoP@NC) by annealing and phosphorizing Ni-ZIF-67 precursor at high temperature.
View Article and Find Full Text PDF