SARS coronavirus 2 (SARS-CoV-2) has caused an ongoing global pandemic with significant mortality and morbidity. At this time, the only FDA-approved therapeutic for COVID-19 is remdesivir, a broad-spectrum antiviral nucleoside analog. Efficacy is only moderate, and improved treatment strategies are urgently needed.
View Article and Find Full Text PDFDespite the fast development of vaccines, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still circulating and generating variants of concern (VoC) that escape the humoral immune response. In this context, the search for anti-SARS-CoV-2 compounds is still essential. A class of natural polyphenols known as flavonoids, frequently available in fruits and vegetables, is widely explored in the treatment of different diseases and used as a scaffold for the design of novel drugs.
View Article and Find Full Text PDFWith the recent global spread of new SARS-CoV-2 variants, there remains an urgent need to develop effective and variant-resistant oral drugs. Recently, we reported in vitro results validating the use of combination drugs targeting both the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) and proofreading exonuclease (ExoN) as potential COVID-19 therapeutics. For the nucleotide analogues to be efficient SARS-CoV-2 inhibitors, two properties are required: efficient incorporation by RdRp and substantial resistance to excision by ExoN.
View Article and Find Full Text PDFSARS-CoV-2 has an exonuclease-based proofreader, which removes nucleotide inhibitors such as Remdesivir that are incorporated into the viral RNA during replication, reducing the efficacy of these drugs for treating COVID-19. Combinations of inhibitors of both the viral RNA-dependent RNA polymerase and the exonuclease could overcome this deficiency. Here we report the identification of hepatitis C virus NS5A inhibitors Pibrentasvir and Ombitasvir as SARS-CoV-2 exonuclease inhibitors.
View Article and Find Full Text PDFSARS-CoV-2 has an exonuclease-based proofreader, which removes nucleotide inhibitors such as Remdesivir that are incorporated into the viral RNA during replication, reducing the efficacy of these drugs for treating COVID-19. Combinations of inhibitors of both the viral RNA-dependent RNA polymerase and the exonuclease could overcome this deficiency. Here we report the identification of hepatitis C virus NS5A inhibitors Pibrentasvir and Ombitasvir as SARS-CoV-2 exonuclease inhibitors.
View Article and Find Full Text PDFMass spectrometry (MS)-based sequencing has advantages in direct sequencing of RNA, compared to cDNA-based RNA sequencing methods, as it is completely independent of enzymes and base complementarity errors in sample preparation. In addition, it allows for sequencing of different RNA modifications in a single study, rather than just one specific modification type per study. However, many technical challenges remain in de novo MS sequencing of RNA, making it difficult to MS sequence mixed RNAs or to differentiate isomeric modifications such as pseudouridine (Ψ) from uridine (U).
View Article and Find Full Text PDFJ Antimicrob Chemother
June 2021
In our previous study, three kinds of grapefruit peel soluble dietary fibers (SDFs) were prepared by microwave-assisted modifications, including microwave-sodium hydroxide treatment SDF (MST-SDF), microwave-enzymatic treatment SDF (MET-SDF) and microwave-ultrasonic treatment SDF (MUT-SDF). The present study aimed to investigate the structural, functional and in vitro digestion properties of three kinds of bread incorporated with SDFs, named MST-SDF bread (SB), MET-SDF bread (EB), and MUT-SDF bread (UB). Scanning electron microscopy, X-ray diffraction, differential scanning calorimetry and texture profile analysis were used to determine the structural properties.
View Article and Find Full Text PDFPost-transcriptional modifications are intrinsic to RNA structure and function. However, methods to sequence RNA typically require a cDNA intermediate and are either not able to sequence these modifications or are tailored to sequence one specific nucleotide modification only. Interestingly, some of these modifications occur with <100% frequency at their particular sites, and site-specific quantification of their stoichiometries is another challenge.
View Article and Find Full Text PDF