Hazardous waste incineration fly ash (HFA) is considered a hazardous waste owing to the high associated concentrations of heavy metals and soluble salts. Hence, cost effective methods are urgently needed to properly dispose HFA. In this study, geopolymers were prepared by alkali-activation technology to stabilize and solidify heavy metals in HFA.
View Article and Find Full Text PDFIn contaminated soil, pristine biochar has poor applicability for immobilizing vanadium (V), which mainly exists as oxyanions in soil. To elucidate the immobilization potential and biotic/abiotic stabilizing mechanisms of a ferrous sulfate (FS)-modified sludge biochar in a V-contaminated soil from a mining area, we investigated the effects of biochar addition on the soil characteristics, growth of alfalfa, leachability, bioavailability, speciation, and fractionation of V, and changes in the microbial community structure and metabolic response. The results showed that the water extractable, acid-soluble (F1), and pentavalent fractions of V in soil decreased by up to 99 %, 95 %, and 55 %, respectively, whereas the reducible and (F2) oxidizable (F3) fractions increased by up to 45 % and 76 %, respectively.
View Article and Find Full Text PDFThe safe disposal of municipal solid waste incineration fly ash (MSWIFA) has become the weakest link of the circular economy of MSW due to its hazardous nature. In this study, we focused on the heavy metals solidification of MSWIFA by using alkali-activation technology and introducing a mold-pressing method. The influence of alkaline activator (AA) including alkali concentration and dosage of sodium silicate solution were well designed and studied.
View Article and Find Full Text PDF