With the advancement of micro- and nanomanufacturing technologies, electronic components and chips are increasingly being miniaturized. To automatically identify their packaging materials for ensuring the reliability of ICs, a hybrid deep learning framework termed as CNN-transformer interaction (CTI) model is designed on IC packaging images in this paper, in which several cascaded CTI blocks are designed to bidirectionally capture local and global features from the IC packaging image. Each CTI block involves a CNN branch with two designed convolutional neural networks (CNNs) for CNN local features and a transformer branch with two transformers for transformer global features and transformer local-window features.
View Article and Find Full Text PDF