Bubbles play a ubiquitous role in electrochemical gas evolution reactions. However, a mechanistic understanding of how bubbles affect the energy efficiency of electrochemical processes remains limited to date, impeding effective approaches to further boost the performance of gas evolution systems. From a perspective of the analogy between heat and mass transfer, bubbles in electrochemical gas evolution reactions exhibit highly similar dynamic behaviors to them in the liquid-vapor phase change.
View Article and Find Full Text PDFPassive heat management is crucial in space, especially for extended missions involving protection from sunlight. Thermal coatings with desirable optical properties can drastically reduce the power consumed by active cooling systems, thereby reserving more resources for other critical systems onboard. Specifically, materials with wavelength-dependent reflectance and emittance are desirable for managing incident sunlight and self-cooling by thermal emission.
View Article and Find Full Text PDFDue to their extraordinary mechanical strength and electrical and thermal conductivities, graphene fibers and their derivatives have been widely utilized in various functional applications. In this work, we report the synthesis of a three-dimensional (3D) hollow reduced graphene oxide tube assembly (HrGOTA) using the same wet spinning method as graphene fibers. The HrGOTA has high thermal conductivity and displays the unique capability of encapsulating phase change materials for effective solar-thermal energy conversion.
View Article and Find Full Text PDFPlanck's law predicts the distribution of radiation energy, color and intensity, emitted from a hot object at thermal equilibrium. The Law also sets the upper limit of radiation intensity, the blackbody limit. Recent experiments reveal that micro-structured tungsten can exhibit significant deviation from the blackbody spectrum.
View Article and Find Full Text PDF